Mobile context-aware recommender systems face unique challenges in acquiring context. Resource limitations make minimizing context acquisition a practical need, while the uncertainty inherent to the mobile environment makes missing context values a major concern. This paper introduces a scalable mechanism based on Bayesian network learning in a tiered context model to overcome both of these challenges. Extensive experiments on a restaurant recommender system showed that our mechanism can accurately discover causal dependencies among context, thereby enabling the effective identification of the minimal set of important context for a specific user and task, as well as providing highly accurate recommendations even when context values are missing.
- Context acquisition,
- Context model,
- Restaurant recommender system
Available at: http://works.bepress.com/hweehwa-pang/23/