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Abstract

We present a theory of voting that predicts that elections are more likely to be
close, and voter turnout is more likely to be high when citizens possess better public
information about the composition of the electorate. These findings suggest that pro-
viding more information to potential voters about aggregate political preferences (e.g.,
through pre-election polls or expert forecasts) may undermine the democratic process.
Our analysis reveals that if the distribution of political preferences is common knowl-
edge, then the unique type-symmetric equilibrium leads to a stark neutrality result in
which each alternative is equally likely to win the election. By contrast, when citi-
zens are ignorant about the preference distribution, the majority is more likely to win
the election and expected voter turnout is lower. Welfare is, therefore, unambiguously
higher when citizens possess less information about the preference distribution.
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The time has come, I think, to advocate the unspeakable in a forthright and
unapologetic manner, and not in the facetious or peripheral way that tradition
and circumstance have heretofore demanded. By our rules of procedure, and by
any scientific method of counting or reckoning under these rules, the race for
the presidency has ended in a flat tie and should be decided by the toss of the
coin...

–Stephen Jay Gould, Boston Globe, November 30, 2000.

1 Introduction

The U.S. presidential election of 2000 between George W. Bush and Al Gore resulted in a

virtual tie. Gore won the national popular election by 532,994 votes or just 0.35%. Bush

won the popular election in the decisive state of Florida by 537 votes or just 0.008%. Bush’s

ultimate margin of victory in the Electoral College was a mere 5 of 537 votes, the thinnest

margin since Hayes beat Tilden by a single vote in 1876. While the U.S. presidential

contest of 2000 is one of the most notable elections in recent history to result in a virtual

tie, it is not the only one. The Washington State gubernatorial race of 2004, for example,

was decided by 129 votes in a hand recount of over 2.9 million ballots.1 Similarly, the

1997 race for the U.K. House of Commons seat for Winchester resulted in a deadlock, the

official count separating the top two candidates by only 2 votes out of 52,198 cast. The

two vote margin was disputed and the election was ultimately decided by a court-ordered

special runoff.2 Indeed, as Barone (2006) notes, close elections appear to be an increasingly

common part of the political landscape in modern democracies. The very contentious 2006

national elections in Mexico and Italy were each decided by a margin of less than 1%. Also,

Canada and Germany have governments headed by leaders of center-right parties that have

only a plurality of parliamentary seats that came in ahead of their center-left predecessors

by small margins.

In this paper we present a theory of voting that predicts that elections are more likely

to be close and voter turnout is more likely to be high when citizens possess better public

information about the composition of the electorate. These findings indicate that providing

more information to potential voters about aggregate political preferences (e.g., through

polls, political stock markets, or expert forecasts) may actually undermine the democratic

1See http://www.cnn.com/2005/allpolitics/01/12/washington.governor.ap/#contentarea.
2See http://news.bbc.co.uk/vote2001/hi/english/voting system/newsid 1171000/1171887.stm.
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process.3

Our theory is built on a model in which citizens possess private valuations over electoral

outcomes and in which voting is costly.4 Within this framework we explore two informa-

tional regimes, one in which the distribution of political preferences is common knowledge

(the informed-voter setting) and one in which citizens are symmetrically ignorant about

this distribution (the uninformed-voter setting). In each regime we characterize a unique

type-symmetric Bayesian Nash Equilibrium (BNE) in which all citizens randomize between

voting for their preferred alternative and abstaining.5 We further show that this is the

only behavior consistent with a symmetric BNE of the voting game when the population of

citizens is sufficiently large.

We compare expected equilibrium outcomes across the two informational environments

and find stark differences. First, in the informed-voter setting, the probability that either

alternative wins the election under the mixed-strategy BNE equals 1
2 regardless of the

distribution of political preferences or the cost of voting. This neutrality result stems from

the fact that individuals who expect to be in the minority vote with higher probability

than those who expect to be in the majority in equilibrium. In other words, individuals

who expect to be in the minority suffer less from the free-rider problem. Indeed, their

lower expected numbers are offset exactly by their greater expected participation, so that

the expected equilibrium number of votes for each alternative is the same regardless of the

actual distribution of preferences.6

In the uninformed-voter setting, however, citizens are not able to base their voting

decisions on the distribution of political preferences, since they know only their own types.

In fact, given a symmetric common prior over the parameter governing the distribution of

tastes, it follows that all citizens vote with the same probability regardless of type. This

3For statistical evidence that polls influence voter turnout, see Sudman (1986) and West (1991). Klor
and Winter (2006) present evidence (from experiments and recent U.S. gubernatorial elections) that the
publication of poll results may help the majority win when the population is closely divided. They find
that members of the majority are most likely to abstain in lopsided electorates. This appears to be what
happened in the most stunning upset in U.S. presidential election history when Truman defeated Dewey in
1948 despite trailing in the polls by as much as 15%.

4Citizens in our private-values model are differentiated by their intrinsic preferences over political alter-
natives. Hence, we do not study the information aggregation problem that is the focus of common-value
models such as Feddersen and Pesendorfer (1997) and Razin (2003).

5Mixing arises from the assumption that all citizens possess the same cost of voting. As we discuss in
the Conclusion, however, our main findings are robust to a ‘purified’ version of the model in which voting
costs are independently and privately drawn from a continuous distribution.

6The stark nature of this neutrality result arises from the simplifying assumptions underlying our model.
A qualitatively similar finding would, however, still obtain in a less stylized but less transparent setting.
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equilibrium probability of voting is strictly positive, and the majority group, therefore, wins

the election with probability strictly greater than 1
2 . Importantly, it is also possible to show

that expected equilibrium voter turnout is lower in the uninformed-voter setting. Hence,

the uninformed-voter setting gives rise to elections involving higher expected social benefits

and lower expected social costs. In other words, when citizens possess less information

about the political landscape, elections are both more democratically efficient (the majority

is more likely to win) and more economically efficient (fewer resources are expended in the

election).

We also investigate whether the uninformed-voter setting continues to yield higher wel-

fare as the electorate size grows. In particular, we present a limit analysis as the number of

citizens tends to infinity. In this context, it is possible to show that the equilibrium number

of votes for each alternative correspond to independent random variables following Poisson

distributions with endogenously determined means.7 Armed with this fact, it is straight-

forward to verify the asymptotic superiority of the uninformed voter setting. Indeed, our

strongest result holds in the limit as the number of citizens tends to infinity and the relative

cost of voting approaches zero. In this key situation, the alternative favored by the majority

wins the election with probability arbitrarily close to 1 when citizens are uninformed but

only with probability 1
2 when they are informed.

Our private-values costly-voting model follows in the tradition of the pioneering works

by Ledyard (1984) and Palfrey and Rosenthal (1983, 1985).8 Ledyard (1984) is primarily

concerned with formalizing political competition in a setting with rational voting and en-

dogenously determined political alternatives,9 whereas Palfrey and Rosenthal (1983, 1984)

focus on the issue of equilibrium voter turnout by fixing policy alternatives.10

More recent papers in the private-values costly-voting paradigm include Campbell (1999)

and Borgers (2004).11 Campbell (1999) studies a model in which members of the minority

7This finding is reminiscent of Myerson (1998, 2000). There are, however, two important differences.
First, the means of the Poisson distributions in our model are determined endogenously. Second, they are
finite when voting costs are positive.

8See, Hansen, Palfrey and Rosenthal (1987) for empirical evidence, and Levine and Palfrey (2007) for
experimental evidence in favor of this model.

9For recent work on strategic candidacy, see Dutta, Jackson and Le Breton (2001). For an intriguing
comprehensive study of the origins and persistence of democratic institutions, see Acemoglu and Robinson
(2006).

10Aldrich (1993) surveys the three main theories of voter turnout, including strategic models with costly
voting.

11See also Osborne, Rosenthal and Turner (2000) who investigate strategic costly participation in meetings
rather than elections.

4



group possess stronger political preferences (higher values or lower costs) than members of

the majority. He presents a limit result that is similar in spirit to our neutrality finding

in the informed-voter setting. Specifically, Campbell finds that the minority group wins

the election with probability no less than 1
2 when the number of citizens tends to infinity.

However, Campbell does not consider the impact of public information on electoral outcomes

or voter turnout.

Borgers (2004) investigates a version of our informed-voter setting in which it is com-

mon knowledge that the distribution of political preferences is symmetric (i.e., each citizen

is equally likely to prefer either alternative). In this context, Borgers shows that equilibrium

voter turnout may be excessive, and he argues cogently that compulsory-voting laws, there-

fore, may make little sense. Because it focuses on symmetrically distributed types, Borgers’

model cannot address the electoral bias at the heart of our analysis. Moreover, Borgers

does not consider the uninformed-voter setting and thus the impact of public information

on expected turnout or electoral outcomes.

Two recent papers that are perhaps the closest to our investigation are Krasa and

Polborn (2009) and Goeree and Grosser (2007). Krasa and Polborn generalize the Borg-

ers (2004) model to incorporate a general distribution of political preferences and a large

electorate. They independently derive an asymptotic neutrality result akin to the one we

present below in the informed-voter setting, which leads them to recommend subsidizing

voter participation. Our findings in the uninformed-voter setting, by contrast, illustrate that

political neutrality can be broken with even lower turnout than in the Krasa and Polborn

model if voters are uncertain about the distribution of political preferences. Goeree and

Groser (2007) also study the impact of information on electoral outcomes in small elections.

Several of their findings regarding the effect of information have analogues in our analysis of

small elections, though they were independently discovered in a somewhat different setup.

Goeree and Groser do not, however, investigate large elections — the setting in which our

most important findings are demonstrated12 — or comparative static and welfare properties

of information uncertainty.

In a common-values setting, Martinelli (2006) examines the performance of elections in

aggregating information when information, rather than participation, is costly. Martinelli

shows that while the information acquired by each voter approaches to zero as the electorate

12 In particular, there always exists an equilibrium in totally mixed strategies if electorate size is sufficiently
large.
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becomes large, it does so slowly enough for the electorate as a whole to (approximately) make

the “right” decision. Martinelli’s finding paralels our limit result under the uninformed-

setting: as the electorate grows, each individual votes with a vanishingly small probability,

but the alternative favored by the majority prevails (almost) surely. Finally, Bernhardt,

Duggan, and Squintani (forthcoming) investigate a setting complementary to ours in which

candidates learn about voter preferences through polls. They find that citizens prefer private

polls to public ones because public polls induce the candidates to cluster their platforms

around the preferences of the median voter. Hence, the electorate may be better represented

when candidates possess less information about voter preferences.

In the next section we set out the model. Sections 3 and 4 contain the analysis of

the informed-voter setting and the uninformed-voter setting respectively. In Section 5 we

perform welfare comparisons across the two regimes. Section 6 contains an extension in-

vestigating the impact of increased uncertainty on the equilibrium in the uninformed-voter

setting. We conclude in Section 7 with a brief discussion of three avenues for possible future

research. Several technical lemmas and the proofs of all results appear in the Appendix.

2 The Model

There are n ≥ 2 agents who may cast a vote in an election between two alternatives, A and

B. Each agent is one of two types, one who prefers A or one who prefers B. A type t agent

receives a gross payoff normalized to 1, if alternative t is implemented and 0 otherwise for

t = A,B.13 The cost of voting is c ∈ (0, 1] for all agents.14 Hence, each agent possesses

two (relevant) actions, to abstain or to vote for his preferred alternative because abstaining

strictly dominates voting for one’s less preferred alternative in this context. The ex post

payoff of a type t agent is given in Table 1.

Action/Outcome t wins t loses

Abstain 1 0

Vote 1− c 0− c

Table 1: Ex post Payoffs

Agents simultaneously choose whether to vote. The election is decided by majority rule

and ties are broken by a fair coin toss. Each agent privately knows his type but believes

13To avoid repetition, whenever we use t and t′, we mean t, t′ = A,B and t �= t′ throughout.
14Given that the benefit of winning is normalized to 1, c represents the cost-to-benefit ratio. In the

Conclusion, we briefly discuss the robustness of our results with respect to heterogenous costs of voting.
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that the preferences of the other agents are determined by realizations of i.i.d. random

variables where the probability that an agent is type t is λt ∈ (0, 1) and λA + λB = 1.

We compare type-symmetric Bayesian-Nash Equilibrium (BNE) outcomes of the class

of voting games just described across two informational settings. In the informed-voter

setting, the value of λt is common knowledge among all agents. In the uninformed-voter

setting, all agents possess a non-degenerate common prior over possible values of λt.

3 Informed Voters

Let φt ∈ [0, 1] be the probability that a type-t agent votes (i.e., he abstains with probability

1 − φt). A symmetric BNE in this setting is a pair of probabilities (φA, φB) such that it

is optimal for a type t agent to vote with probability φt when all other agents adhere to

this strategy. To find such an equilibrium, note that a type t agent compares the expected

payoff from voting, U1t , to the expected payoff from abstaining, U0t , whose expressions are

provided in the Appendix. Let ∆t = U1t − U0t denote the net expected utility for a type t

agent from voting.

In order to write ∆t in a more useful form, let the ex ante probability that a type

t agent votes be denoted by αt = λtφt. Hence, the ex ante probability of abstaining is

1−αA−αB. Also, recall that the number of ways kA agents can vote for A, kB can vote for

B, and n−1−kA−kB can abstain is given by the trinomial coefficient
(

n−1
kA,kB ,n−1−kA−kB

)
=

(n−1)!
kA!kB !(n−1−kA−kB)! .

L���� 1. Suppose 0 < φt < 1 for t = A,B. Then, the net expected utility to a type t

agent from voting can be written

∆t =
1

2
Pt(αt, αt′ , n)− c, (1)

where

Pt(αt, αt′ , n) ≡

�n−12 �∑

k=0

(
n− 1

k, k, n− 1− 2k

)
αktα

k
t′(1− αt − αt′)

n−1−2k (2)

+

�n−22 �∑

k=0

(
n− 1

k, k + 1, n− 2− 2k

)
αktα

k+1
t′ (1− αt − αt′)

n−2−2k,

for t = A,B, t �= t′, and �·� is the usual operator that rounds a number to the lower

integer when necessary.
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This lemma has a very intuitive interpretation. It says that the net expected utility

to a type t agent from voting is composed of three parts. Specifically, Pt(αt, αt′ , n) is the

ex ante probability that his vote is pivotal. The first summation in (2) is the probability

that his vote breaks a tie (i.e., the event that k of the other agents vote for each alternative

and n − 1 − 2k of them abstain). The second summation is the probability that his vote

creates a tie (i.e., the event that k of the other agents vote for alternative t, k + 1 vote for

t′, and n− 2− 2k abstain). In each case, the agent’s vote raises the probability of winning

by 1
2 . The third term in eq. (1) is simply the agent’s cost of voting. Note that we restrict

attention to totally mixed strategies, but we will show that this is the case for sufficiently

large electorates and/or a sufficiently large cost of voting.

A convenient feature of Lemma 1 is that the net expected utility from voting can be

expressed entirely in terms of the ex ante probabilities, αA and αB. This derives from the

fact that λA and λB are common knowledge so that each agent perfectly customizes his

voting strategy to the distribution of political preferences. This along with the symmetry

of the net-expected payoff functions given in eq. (1) yield

P�	
	���	� 1. (Weak Neutrality in Small Elections) Suppose (φA, φB) is a symmetric

BNE in totally mixed strategies; i.e., 0 < φt < 1 for t = A,B.

(a) The ex ante probability that an agent votes for alternative A equals the ex ante proba-

bility that he votes for B,

λAφA = λBφB.

(b) Both political outcomes are equally likely in equilibrium,

Pr{t wins|λt} =
1

2
.

This result says that in a type-symmetric mixed-strategy BNE, the probability that

either alternative is implemented does not depend on λt. Hence, the alternative that is

preferred by the expected majority wins the election with the same probability as the one

that is preferred by the expected minority. The intuition underlying this result rests on

a delicate trade-off between an agent’s incentive to win the election and his incentive to

free ride on other voters who likely share his preferences. For instance, if λA > 1
2 , then

a type A agent knows that he is most likely a member of the majority and he has a

relatively high incentive to free ride (i.e., he votes with lower probability). On the other

8



hand, a type B agent knows that he is most likely a member of the minority and he has

a relatively low incentive to free ride (i.e., he votes with higher probability). Remarkably,

these effects exactly balance in equilibrium leading to a situation in which the inherently

stronger position of a type A agent is completely neutralized.15

In light of Proposition 1, let α denote the ex ante probability that an agent votes for

one of the two alternatives in a symmetric totally mixed-strategy BNE (when one exists).

Since the ex ante probability that he votes at all is 2α, it must be that 0 < α ≤ 1
2 . In

order to find a mixed-strategy equilibrium, it is, therefore, necessary to find a solution in

this range to the polynomial indifference equation

1

2
P (α,n)− c = 0, (3)

where P (α,n) = Pt(α,α, n).

The function P (α, n) gives the probability that a given agent’s vote is pivotal when the

other n − 1 agents vote for each alternative with ex ante probability α and abstain with

probability 1− 2α.

L���� 2. P (α,n) is strictly decreasing in α ∈ [0, 12 ].

Intuitively, a given agent’s vote is less likely to be pivotal when others vote with a higher

ex ante probability leading to a greater expected voter turnout. An important implication

of Lemma 2 is that there is at most one solution to eq.(3). Furthermore, there exists a

solution if and only if 12P (0, n) > c and 1
2P (

1
2 , n) ≤ c. Let α∗(c, n) denote the solution when

it exists. Note that existence of α∗(c, n) is necessary but not sufficient for existence of a

totally mixed-strategy BNE. In particular, existence of a totally mixed-strategy BNE also

requires 0 < φt = α∗(c, n)/λt < 1.

15Anecdotal evidence supporting Proposition 1 comes from the frequent failure of pre-election polls in
predicting outcomes. For instance, Jowell, Hedges, Lynn, Farrant and Heath (1993) report that in the 1992
British election, while all polls predicted a very close finish, with the Labor Party victory, the Conservatives
in fact won with a significant lead of 7.6 percent. Similarly, Durand, Blais and Vachon (2001) record that in
the 1998 general elections in Quebec, public polls overwhelmingly predicted an easy victory for the ruling
Parti Quebecois, a party dedicated to Quebec sovereignty. Yet, the Quebec Liberal Party ended up winning.
Finally, Durand, Blais and Larochelle (2004) note that in the 2002 French presidential elections, although
polls consistently predicted a matchup between the incumbent president, Jacques Chirac, and the incumbent
prime minister, Lionel Jospin, in the second round, Jean-Marie Le Pen from an extremist right-wing party
instead finished second. Interestingly, a common defense by the pollsters has been the weak turnout by the
expected majority on the election day.
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P�	
	���	� 2. (Characterization)There exists a unique type-symmetric BNE in totally

mixed strategies if and only if

c(n) < c <
1

2
(4)

and

α∗(c, n) < λt < 1− α∗(c, n), (5)

where

c(n) ≡





(
n− 1
n−1
2

)(
1

2

)n
, if n is odd

(
n− 1
n
2

)(
1

2

)n
, if n is even.

(6)

Condition (4) specifies the range of voting costs for which a solution α∗(c, n) ∈ (0, 12 ]

to (3) exists. Specifically, if c ≥ 1
2 , then the unique BNE is for all agents to abstain. A

deviating agent would surely be pivotal (P (0, n) = 1), but deviating is still not profitable

(12P (0, n) ≤ c). On the other hand, if c ≤ c(n), then at least one type of agent must

vote with probability 1 in equilibrium since α∗(c, n) ≥ 1
2 . When (4) is satisfied, existence

of a symmetric totally mixed-strategy BNE also requires that λt not be too extreme. In

particular, if (5) fails, then the agents in the expected minority will be unable to “neutralize”

the expected majority even if they vote with certainty.

As an illustration of Proposition 2, suppose n = 2. In this case α∗ = 1 − 2c. Hence,

a type-symmetric mixed-strategy equilibrium exists if and only if c ∈ (14 ,
1
2) and λt ∈

(1− 2c, 2c). Next, we show that such an equilibrium exists for a wider range of parameters

as the electorate size increases.

Electorate Size and the Prevalence of the Neutrality

Our objective here is to perform a comparative static with respect to the electorate size,

n, and do a limit analysis for n→∞. Since we are ultimately interested in social welfare, we

characterize not only the election outcome but also the expected turnout in the limit. We

emphasize, however, that our limit analysis is meant to present a theoretical benchmark

rather than to resolve the celebrated “paradox of not voting” formalized by Palfrey and

Rosenthal (1985).

L���� 3.

(i) α∗(c, n) is decreasing in n, and converges to 0 as n→∞.
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(ii) c(n) is decreasing, and converges to 0 as n→∞.

(iii) P (α∗t (c, n), α
∗
t′(c, n), n) = 2c as n→∞.

Part (i) of Lemma 3 reveals that as the electorate size increases, each agent is less likely

to vote. This is because a larger electorate means a proportionally larger minority group

and a proportionally larger majority group, which, in turn, means a more severe free rider

problem within each group. Thus, it must take an even smaller cost for an agent to vote with

certainty, as recorded in part (ii). Together with Proposition 2, parts (i) and (ii) imply that

a type-symmetric equilibrium in totally mixed strategies, and therefore the weak neutrality

identified in Proposition 1, is more likely to obtain, as the number of citizens grows. Finally,

since each agent plays a mixed strategy in equilibrium in a sufficiently large election, part

(iii) states that the equilibrium indifference condition in (3) must hold.16

Next, we determine the expected turnout in the limit. To do so, let Xt be the number

of votes for alternative t, and X0 = n−XA−XB be the number of abstentions. Using this

notation, a type t agent’s vote is pivotal if and only if Xt = Xt′ (his vote creates a tie), or

Xt = Xt′ + 1 (his vote breaks a tie). Hence, the probability that his vote is pivotal can be

written

P (α∗t (c, n), α
∗
t′(c, n), n) = Pr{Xt = Xt′}+Pr{Xt = Xt′ + 1}. (7)

Now, observe that (XA,XB,X0|n) ∼Multinomial(α∗A(c, n), α
∗
B(c, n), 1−α∗A(c, n)−α∗B(c, n)|n).

Although, for a fixed n, the random variables, XA and XB, are clearly correlated,17 the

following lemma shows they are independent as n → ∞. Let mt = limn→∞[nα∗t (c, n)] be

the expected equilibrium turnout for type t citizens in the limit.18

L���� 4. The limiting marginal distributions of XA and XB are independent Poisson

distributions with means mA and mB, respectively. Hence, the limiting distribution

of XA +XB is also Poisson with mean mA +mB.

In light of Lemma 4, let f(k|µ) be the p.d.f. for a Poisson distribution with mean µ.

16Note that by (3), P (α∗t (c, n), α
∗
t′(c, n), n) = 2c for all n at a totally mixed-strategy equilibrium, and by

Lemma 3, such an equilibrium is the only one as n→∞.
17The correlation coefficient is −nα∗2(c, n).
18 It can be easily verified that these limits exist and they are finite.
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Recall that f(k|µ) = µke−µ

k! for k = 0, 1, . . . Combining (7) and Lemma 4, it follows that

lim
n→∞

Pt(α
∗
t (n), α

∗
t′(n), n) = lim

n→∞
[Pr{Xt = Xt′}+Pr{Xt = Xt′ + 1}]

=
∞∑

k=0

f(k|mt)f(k|mt′) +
∞∑

k=0

f(k|mt)f(k + 1|mt′) (8)

≡ ΦI(mt,mt′).

Moreover, using part (iii) of Lemma 3, eq.(8) implies that the equilibrium limiting

turnouts (in the Informed regime), mI
A and mI

B, must solve

ΦI(mA,mB) = 2c and ΦI(mB,mA) = 2c. (9)

P�	
	���	� 3. (Strong Neutrality in Large Elections) In the informed regime, for any

voting cost c ∈ (0, 12) and any distribution of preferences λt ∈ (0, 1), there exists a

critical population size n such that n ≥ n implies the existence of a unique type-

symmetric BNE. Moreover,

(a) limn→∞ Pr{Alternative t wins|λt} =
1
2 .

(b) mI
A = mI

B =
MI

2 , where the expected aggregate turnout, MI ∈ (0,∞), uniquely solves

ΦI(M2 , M2 ) = 2c.

Part (a) of Proposition 3 is a direct implication of Lemma 3. It indicates that the

neutrality result identified in Proposition 1 is endemic to elections with large populations.

In other words, when the distribution of voter preferences is common knowledge, large

elections are likely to be close for (approximately) the whole parameter space. As explained

in Proposition 1, this neutrality result is a consequence of the strategic voting behavior:

when agents have “good” information about voter preferences, they are able to customize

their voting decisions to the relative size of the groups.

Part (b) of Proposition 3 points to an additional kind of neutrality, which is absent

in small elections. It says that in large elections, the expected turnout for each group is

independent of the distribution of voter preferences.19 That is, two large elections with

19Of course, the equality of turnouts is an artifact of the assumption that the cost of voting is the same
for both types of agents. However, it should be clear from (9) that even if costs were different, the limit
turnouts would still be independent of the distribution of political preferences, i.e., λt. Moreover, this result
is robust to an extension with private cost of voting, where each agent draws his cost from a distribution.
For more on this point, see the discussion in the Conclusion and in Taylor and Yildirim (2008) for a formal
derivation.
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λt =
1
2 and λt =

99
100 result in the same expected turnout for each alternative, contrary to

what intuition suggests.

R����� 1. While theoretically intriguing, by the weak and strong neutrality results, we

do not suggest that elections, especially those with large electorates, will tend to be

close regardless of the actual polling results; because in reality, polls provide only

a noisy estimate of the preference distribution, λt. Such noise is likely to prevent

citizens from perfectly customizing their voting decisions to the relative size of the

political groups. In fact, we show in the next section that when citizens are uncertain

about the preference distribution, the neutrality result breaks and it does so in favor

of the majority.

R����� 2. One may wonder whether our restriction to type-symmetric strategies may

be unduly intensifying the free-rider problem and preventing the majority from win-

ning. Note, however, that in the presence of the incomplete information about others’

preferences, and the resulting uncertainty about the group sizes, perfectly coordinated

voting strategies for the majority to guarantee a win would not be sustained in any

equilibrium.

4 Uninformed Voters

Consider a setting in which λt is not common knowledge. Specifically, suppose that before

learning their types, the agents’ beliefs about λt correspond to a non-degenerate common

prior distribution. For ease of exposition, assume that the prior is symmetric and defined

over a finite set of values, λ1 > λ2 > · · · > λr, where r ≥ 2.20 Symmetry of the prior

requires Pr{λt = λi} = Pr{λt′ = λi} = θi ∈ (0, 1), for i = 1, . . . , r. This implies that

E[λt] =
1
2 . Also, after learning their types, agents’ updated beliefs are

Pr{λt = λi|t} = 2θiλi.

Notice Pr{λt = λi|t} ≥ Pr{λt = λi} if and only if λi ≥ 1
2 . That is, upon observing their

own types, agents put more weight on being in the majority—a fact that will be useful in

developing the intuition below.

20Symmetry of the prior is assumed both for tractability and in order to isolate the role of information
from any ex ante advantage. It is worth emphasizing, however, that the welfare results presented below are
conditioned on the realization of λi; i.e., we do not assume that actual political preferences are symmetrically
distributed.
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As in the informed-voter setting, a symmetric BNE in this context corresponds to a pair

of voting probabilities (φA, φB). Moreover, (φA, φB) is a symmetric BNE in totally mixed

strategies if and only if it satisfies the indifference conditions

1

2
E[Pt(λtφt, λt′φt′)|t]− c = 0, (10)

where Pt(·, ·) is defined in (2).

P�	
	���	� 4. (Non-neutrality) Suppose (φA, φB) is a type-symmetric BNE in totally

mixed strategies. Then,

(a) φA = φB = φ.

(b) For n <∞, Pr{t wins|λt = λi} > 1
2 if and only if λi > 1

2 .

Part (a) of this result indicates that any type-symmetric BNE in totally mixed strategies

must be strongly symmetric in the sense that all agents vote with the same probability

regardless of type.21 The intuition is straightforward. When the prior is symmetric, an

agent who discovers that he is type A learns as much about the environment as an agent who

discovers that he is type B. Hence, both types vote with the same probability in equilibrium.

This contrasts sharply with part (a) of Proposition 1 where it is shown that agents in the

expected minority vote with higher probability than those in the expected majority. This

effect is absent in the uninformed-voter setting because no agent expects to be in the

minority conditional on learning only his own type. In particular, E[λt|t] = 2E[λ
2
t ] >

1
2 .

Next, consider part (b). Because both types of agents vote with the same probability,

it follows that the alternative with the expected majority is strictly more likely to win the

election. Again, this contrasts with Proposition 1 where it was shown that each alternative

was equally likely to win when λt was common knowledge.

In order to characterize a symmetric BNE in totally mixed strategies in the uninformed-

voter setting, we use φA = φB = φ and note that the expected probability of being pivotal

in equilibrium is

Q(φ, n) ≡ E[Pt(λtφ, (1− λt)φ, n)|t] =

� r+12 �∑

i=1

2θiT (φ, n|λA = λi) (11)

21This strong symmetry result, which Goeree and Groser (2007) simply assume, will play a key role in the
main finding about welfare.
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where we define

T (φ, n|λA = λi) ≡ λiPA(λ
iφ, (1− λi)φ, n)|A] + (1− λi)PB((1− λi)φ, λiφ, n)|B] (12)

=

�n−12 �∑

k=0

(
n− 1

k, k, n− 1− 2k

)
(λi(1− λi))kφ2k(1− φ)n−1−2k

+2

�n−22 �∑

k=0

(
n− 1

k, k + 1, n− 2− 2k

)
(λi(1− λi))k+1φ2k+1(1− φ)n−2−2k.

Hence, the equilibrium φ∗ must solve

1

2
Q(φ, n)− c = 0. (13)

P�	
	���	� 5. In the uninformed setting, there exists a unique type-symmetric BNE in

totally mixed strategies if and only if c(n) < c < 1
2 , where

c(n) =





c(n)2nE

[
λ
n+1
2

t (1− λt)
n−1
2

]
, if n is odd,

c(n)2nE
[
(λt(1− λt))

n
2

]
, if n is even.

Similar to Proposition 2 of the preceding section, this result characterizes the region

of the parameter space where the unique type-symmetric BNE in totally mixed strategies

obtains. Specifically, if c ≥ 1
2 , then no agents vote in equilibrium, and if c ≤ c(n), then they

all vote with certainty. In order to facilitate comparison with the informed-voter setting, it

is necessary to know how c(n) compares with c(n).

L���� 5. For any n, c(n) < c(n).

Lemma 5 indicates that if a type-symmetric BNE in totally mixed strategies obtains in

the informed-voter setting, then an analogous BNE obtains in the uninformed-voter setting

as well. This is because agents are more likely to free ride and follow a mixed strategy when

they are in the majority. In the uninformed regime, this is exactly what all agents think

after updating their beliefs about λt based on their own types.

Next, we consider the large election properties of the uninformed regime.

Electorate Size and the Majority Advantage

The analysis in this section essentially mimics that presented for the informed regime.

We first note the following intuitive observation regarding the probability of voting.
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L���� 6. φ∗(n) strictly decreases in n and converges to 0, as n→∞.

That is, the equilibrium probability of voting decreases in the electorate size and becomes

negligible in large elections, because the free-rider problem is exacerbated in each political

group.

Now, recall that Xt and X0 denote the number of votes for alternative t, and the number

of abstentions, respectively. It is clear that (XA, XB,X0|n) ∼Multinomial(λAφ
∗(n), λBφ∗(n), 1−

φ∗(n)|n). The following result parallels Lemma 4.

L���� 7. The limiting marginal distributions of XA and XB are independent Poisson

distributions with respective means λAM and λBM , where M = limn→∞[nφ
∗(n)].

We now re-write the pivot probability in (11) in terms of XA and XB. To do so, we first

observe that

T (φ∗(n), n|λA = λi) = Pr{XB = XA}+ 2λ
iPr{XB = XA + 1}. (14)

Hence, given the respective means, λiM and (1−λi)M for alternative A and B for λA = λi,

we have

lim
n→∞

Q(φ∗(n), n) =

� r+12 �∑

i=1

2θi lim
n→∞

[Pr{XB = XA}+ 2λ
iPr{XB = XA + 1}]

=

� r+12 �∑

i=1

2θi

[ ∞∑

k=0

f(k|λiM)f(k|(1− λi)M) + 2λi
∞∑

k=0

f(k|λiM)f(k + 1|(1− λi)M)

]

≡ ΦU (M |θ, λ).

From (13), the expected aggregate turnout, MU , is determined by

ΦU (M |θ, λ) = 2c. (15)

P�	
	���	� 6. In the uninformed regime, for any voting cost c ∈ (0, 12) and any distrib-

ution of preferences (λ, θ), there exists a critical population size n such that n ≥ n implies

the existence of a unique symmetric BNE. Moreover,

(a) limn→∞ Pr{t wins|λt = λi} > 1
2 if and only if λi > 1

2 .

(b) limc→0 limn→∞ Pr{t wins|λt = λi} = 1 if and only if λi > 1
2 .
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(c) mU
A = λAM

U , and mU
B = λBMU , where the aggregate turnout, MU ∈ (0,∞), uniquely

solves (15).

Part (a) of Proposition 6 indicates that the non-neutrality result identified in Proposition

4 remains valid for large elections. The reason is that while the probability of voting

becomes negligible, the aggregate turnout is still significant, and without electoral bias

under the uninformed regime, large elections favor the majority. In fact, as the cost of

voting converges to zero, the aggregate turnout grows so large that the majority wins with

virtual certainty, which is recorded in part (b). The last part of Proposition 6 simply says

that the expected turnout by each type of citizen is proportional to the fraction of that

type in the population. This contrasts with the informed case where the expected turnout

is equal across groups regardless of the initial distribution of preferences.

Before proceeding to the welfare analysis, it is worth comparing part (b) of Proposition

6 to Martinelli (2006). As mentioned in the Introduction, Martinelli studies a common-

values model of voting in which it is the information, rather than participation, that is

costly. He finds that while the amount of information each voter gathers becomes negligible

as the number of citizens increases, it does so slowly enough that the electorate remains

well-informed to choose the “right” alternative.

5 Welfare Comparison

Armed with the equilibrium outcomes of the two informational regimes, we are now ready to

investigate their implications for social welfare. The expected social welfare in this context

is the difference between the expected social benefit and the expected social cost. Given

the payoff structure in Table 1, and conditional on λA = λi, the expected social benefit is

B(φ, n|λA = λi) = Pr{A wins|λi}λin+ Pr{B wins|1− λi}(1− λi)n, whereas the expected

social cost is C(φ, n|λA = λi) = cλiφ∗An+c(1−λi)φ∗Bn. Hence, the expected social welfare is

W (φ, n|λA = λi) = B(n|λA = λi)−C(n|λA = λi). From an ex ante point of view however,

since the realization of λA is unknown, we compare the ex ante social benefit, cost and
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welfare for a given θ, which we write as

B(θ, λ, n) =
r∑

i=1

θiB(φ, n|λA = λi),

C(θ, λ, n) =
r∑

i=1

θiC(φ, n|λA = λi),

W (θ, λ, n) =
r∑

i=1

θiW (φ, n|λA = λi).

The following result lays out a central finding of this paper.

P�	
	���	� 7. (Welfare) Suppose (4) and (5) hold so that a type-symmetric totally-mixed

strategy BNE obtains in either informational setting. Then, for all n ≤∞

(a) C
I
(θ, λ, n) > C

U
(θ, λ, n),

(b) B
I
(θ, λ, n) < B

U
(θ, λ, n),

(c) W
I
(θ, λ, n) < W

U
(θ, λ, n).

Part (a) reveals that the expected social cost of voting is strictly greater under the

informed regime, which is equivalent to saying that the expected turnout is higher. The

intuition behind this result is easily grasped. For any λt, the expected equilibrium voter

turnout is 2α∗n in the informed-voter setting and φ∗n in the uninformed-voter setting.

To see that 2α∗ > φ∗, consider a situation in which agents vote with the same ex ante

probability, 2α = φ, in each setting. In this case, a voter in the informed situation has a

higher probability of being pivotal than one in the uninformed situation, P (α,n) > Q(φ, n).

The reason is that when agents have better information, they are better positioned to vote

strategically. Specifically, with better information, agents who expect to be in the minority

vote with higher probability and agents who expect to be in the majority vote with lower

probability. This voter-composition effect leads to a closer election and higher probability

of being pivotal in the informed-voter setting when the ex ante probability of voting is the

same across regimes. Of course, in equilibrium the probability of being pivotal must equal

2c in both settings. This, however, requires agents to vote with higher ex ante probability

in the informed-voter setting, 2α∗ > φ∗.

Part (b) of Proposition 7 says that the ex ante social benefit is strictly higher in the

uninformed regime than in the informed one. The expected social benefit is maximized
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when the alternative that is preferred by the majority group wins. As explained above,

this is more likely to be the case with the uninformed regime. In particular, in a large

election with a small cost of voting, the majority wins with probability close to 1 under the

uninformed regime whereas this probability still remains at 1
2 under the informed regime.

Together with part (a) and (b), it follows that expected welfare is unambiguously higher

when agents are uninformed about the composition of the electorate, as recorded in part

(c).

An implication of this finding is that the public release of information that resolves all

uncertainty about the distribution of voter preferences reduces welfare. The reason for this

inefficiency is twofold. First, when the distribution of voter preferences becomes common

knowledge, each agent knows exactly whether he belongs to the expected minority or the

expected majority group. In this instance, as explained following Proposition 1, each agent

tailors his voting strategy to his expected group size so that in equilibrium each group is

equally likely to win the election. When no information about the distribution of voter

preferences is provided, however, each agent votes with the same equilibrium probability,

making the expected majority more likely to win, which is obviously better for welfare.

Second, as Proposition 7 reveals, the expected total cost of voting is smaller when voters

are uninformed. The reason is that when uninformed, all agents put more weight on being

in the majority and hence possess less incentive to vote.

6 An Extension: Uncertainty and Welfare

To this point we have compared two informational regimes, and showed that the uninformed

regime outperforms the informed one in expected social welfare. Under the uninformed

regime, agents are ignorant about whether they belong to the majority or minority. Al-

though this uncertainty leads them to vote less vigorously and keep social cost lower than

under the informed regime, it also reduces electoral bias and increases the probability that

the majority wins. Staying within the uninformed regime, a natural question is then to ask

whether greater uncertainty results in higher social welfare. To investigate this issue, we

first define the degree of uncertainty via a mean-preserving spread over θ.

D������	�. (Mean-Preserving Spread) Let θ′ = (θ1′, . . . , θ�
r+1
2 �′, . . . , θr′) and θ = (θ1, . . . ,

θ�
r+1
2 �, . . . , θr) be two symmetric distributions over {λ1, . . . , λ�

r+1
2 �, . . . , λr}. Distrib-

ution θ′ is said to be a mean-preserving spread of θ if there is some i0 ∈ {1, . . . ,
⌊
r+1
2

⌋
}
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such that {
θi′ ≥ θi, if i = 1, . . . , i0
θi′ ≤ θi, if i = i0 + 1, . . . ,

⌊
r+1
2

⌋
.

The following result shows that increasing uncertainty about political preferences not

only improves the chances of the majority winning the election but also reduces the expected

cost of voting by reducing the incentive to turnout.

P�	
	���	� 8. Let θ′ and θ be two symmetric priors that induce respective equilibrium

voting probabilities φ′∗ and φ∗. If θ′ is a mean-preserving spread of θ, then for any

n (finite or infinite),

(a) φ′∗ ≤ φ∗

(b) B(θ′, λ, n) ≥ B(θ, λ, n)

(c) W (θ′, λ, n) ≥W (θ, λ, n).

The intuition behind part (a) is obvious. When agents are more uncertain about political

preferences, they expect that the election is less likely to be close, which, in turn, makes

their votes less pivotal, curbing the incentive to turnout. This reduces the expected social

cost. Part (b) is, however, less obvious. To see this, recall that the expected social benefit

increases if and only if the probability of winning for the majority increases. However, by

encouraging fewer citizens to vote, greater uncertainty adversely affects this probability.

What part (b) shows is that the positive direct effect of greater uncertainty outweighs the

negative strategic effect. The last part then follows from part (a) and (b).

7 Conclusion

In this paper we have explored the impact of public information about the composition of

the electorate on equilibrium voting behavior. Our theoretical findings demonstrate that

providing more information of this kind to potential voters harms the democratic process.

It biases electoral outcomes toward the alternative preferred by the minority and it leads

to higher expected aggregate voting costs.

Although we have employed a standard costly voting model where voters possess intrinsic

preferences (i.e., private values) over electoral alternatives and a fixed identical cost of

voting, the model can be extended in various ways to lend additional realism and provide
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guidance for policymakers. In what follows, we briefly discuss three possible extensions of

the basic model.

• Cost Uncertainty. Our assumption that all agents possess the same cost of voting

is clearly a dramatic simplification. We have, however, investigated a more realistic

setting where agents’ costs are drawn independently from a continuous distribution

G(·) defined on [c0, c1] as in Palfrey and Rosenthal (1985). Our analysis revealed that

all results except for the weak neutrality finding in Proposition 1 remain essentially

unchanged. In particular, the strong neutrality result under the informed regime, and

the main welfare conclusions continue to hold under cost (or benefit) heterogeneity.

The breakdown of weak neutrality under the informed regime implies that the ma-

jority is more likely to win the election when the population is finite, although an

under-dog effect still obtains that gives the minority a disproportionate probability

of winning. The intuition is as follows. As noted in Proposition 1, weak neutrality

requires that voting cost not be so small as to violate the mixed strategy equilibrium.

Otherwise, even if the minority agents vote with probability 1, they will be unable

to completely neutralize the majority, and thus for small costs, the majority is more

likely to win. When costs are drawn from a continuous distribution, the equilibrium

must account for all possible cost realizations (including the small ones), implying

that the majority wins with probability greater than 1
2 . In a large election, however,

only the agents whose costs are close to the lower bound c0 vote. In this case, the

equilibrium conditions coincide with the setting studied above with voting cost equal

to c0. Hence, the probability that either side wins is 1/2 independent of λ in this case.

• Common values. It seems plain that in many elections voters are motivated pri-

marily by their fundamental ideologies. Party affiliations and political labels such as

Liberal and Conservative obviously connote intrinsic differences in ideological princi-

ples. Hence, in elections where ideologies are especially important, the findings pre-

sented in this paper regarding the release of public information sound a precautionary

note. Nonetheless, it is reasonable to suppose that some fraction of citizens may be

non partisans whose objective is to elect the “best” or “most qualified” candidate. It

would, therefore, be very interesting to investigate the role of public information in a

richer model that allows for both partisan and nonpartisan citizens.

• Endogenous Source of Information. To the extent that opinion polls, political
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stock markets, and expert forecasts contain real information about voter sentiment,

our analysis reveals that their publication may actually impede efficiency, giving rise to

closely contested elections with excessive voter turnout. Before firm policy conclusions

can be drawn, however, future research must investigate the endogeneity of the source

of information about political preferences. In particular, given the feedback we find

between information and equilibrium voting behavior, it is important to understand

the incentives for individuals to report their true preferences to pollsters and the

incentives for pollsters and pundits to disclose publicly and fully any information they

obtain.22

Appendix

P�		� 	� L���� 1: Suppose 0 < φt < 1 for t = A,B. First, note that a type t agent’s

respective expected payoffs from voting and abstaining are given by

U1t =
n−1∑

k=0

(
n− 1

k

)
λkt (1− λt)

n−1−k
k∑

kt=0

(
k

kt

)
φktt (1− φt)

k−kt

×



kt−1∑

kt′=0

(
n− 1− k

kt′

)
φ
kt′
t′ (1− φt′)

n−1−k−kt′ +

(
n− 1− k

kt

)
φktt′ (1− φt′)

n−1−k−kt

+
1

2

(
n− 1− k

kt + 1

)
φkt+1t′ (1− φt′)

n−2−k−kt
]
− c,

and

U0t =
n−1∑

k=0

(
n− 1

k

)
λkt (1− λt)

n−1−k
k∑

kt=0

(
k

kt

)
φktt (1− φt)

k−kt

×



kt−1∑

kt′=0

(
n− 1− k

kt′

)
φ
kt′
t′ (1− φt′)

n−1−k−kt′ +
1

2

(
n− 1− k

kt

)
φktt′ (1− φt′)

n−1−k−kt


 .

To understand these expected payoffs, fix a type t agent, and let kt be the number of

votes for alternative t excluding his, and kt′ be the number of all votes for alternative t′.

Clearly, if kt′ ≤ kt − 1 and kt′ ≥ kt + 2, then alternative t respectively wins and loses with

probability 1, regardless of the type t agent’s action. If kt′ = kt, alternative t wins with

22Ottaviani and Sorensen (2006) consider competition among forecasters whose payoffs depend on the ex
post accuracy of their forecasts. The difference in an election context is that accuracy depends on the voters’
endogenous behavior.
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probability 1 if the type t agent in question votes, and wins with probability 1
2 if he abstains

and leaves the tie. Finally, if kt′ = kt + 1, alternative t loses with probability 1 if the type

t agent abstains; but may win with probability 1
2 if he votes. These events explain the

expressions in parentheses above. The first two summations in U1t and U0t account for the

distribution of preferences.

Next, subtracting U0t from U1t , the third summation inside parentheses cancel out, re-

ducing the net expected payoff to

∆t = U1t − U0t =
n−1∑

k=0

(
n− 1

k

)
λkt (1− λt)

n−1−k
k∑

kt=0

(
k

kt

)
φktt (1− φt)

k−kt (A-1)

×

[
1

2

(
n− 1− k

kt

)
φktt′ (1− φt′)

n−1−k−kt

+
1

2

(
n− 1− k

kt + 1

)
φkt+1t′ (1− φt′)

n−2−k−kt
]
− c.

Now, recall αt = λtφt and define βt = λt(1−φt). By substituting for these terms into (A-1),

and noting the following facts,

λkt = λktt λk−ktt

(1− λt)
n−1−k = (1− λt)

kt(1− λt)
n−1−k−kt

(1− λt)
n−1−k = (1− λt)

kt+1(1− λt)
n−2−k−kt ,

eq.(A-1) further reduces to

∆t =
1

2
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) k∑
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(
k
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=
1
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Using the following two combinatorial identities:

(
n− 1

k

)(
k

kt

)(
n− 1− k

kt

)
=

(
n− 1

kt, kt, n− 1− 2kt

)(
n− 1− 2kt
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)

23



and (
n− 1

k

)(
k

kt

)(
n− 1− k

kt + 1

)
=

(
n− 1

kt, kt + 1, n− 2− 2kt

)(
n− 2− 2kt

k − kt

)
,

∆t becomes

∆t =
1

2
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αktt αktt′
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where we also use the facts that

n−1∑

k=0

(
n− 1− 2kt

k − kt

)
βk−ktt βn−1−k−ktt′ =

n−1∑

k=0

(
n− 1− 2kt

k − kt

)
βk−ktt β

n−1−2kt−(k−kt)
t′ = (βt+βt′)

n−1−2kt

and

n−1∑

k=0

(
n− 2− 2kt
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βk−ktt β

n−2−2kt−(k−kt)
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and, w.l.o.g., change index of summations to k in the last equality.

The expressions in (1) and (2) then follows by simply observing that βA + βB = 1 −

αA − αB. �

P�		� 	� P�	
	���	� 1: Suppose (φA, φB) is a symmetric BNE in totally mixed

strategies, i.e., 0 < φt < 1 for t = A,B. Then, ∆t = 0, or equivalently

1

2
Pt(αt, αt′)− c = 0. (A-2)

Solving (A-2) for αt′ , we obtain

αt′ =

2c−
�n−12 �∑
k=0

(
n−1

k,k,n−1−2k
)
αktα

k
t′(1− αt − αt′)

n−1−2k

�n−22 �∑
k=0

(
n−1

k,k+1,n−2−2k
)
αktα

k
t′(1− αt − αt′)n−2−2k

.
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Hence, αA = αB, or equivalently λAφA = λBφB.

To prove part (ii), let αt = α. Note that the ex ante probability that a citizen votes is

2α. Thus, the probability that alternative A wins given that an odd number k of citizens

vote is (
n
k

)
(1− 2α)n−k(2α)k

(∑k−1
2

j=0

(
k
j

)
αk−jαj

)

(
n
k

)
(1− 2α)n−k(2α)k

(∑k
j=0

(
k
j

)
αk−jαj

) .

Factoring αk out of the summations and canceling like terms in the numerator and denom-

inator yields
∑k−1

2

j=0

(
k
j

)
∑k
j=0

(
k
j

) = 1

2
,

where we exploit
(
k
j

)
=
(
k
k−j
)
.

If an even number k > 0 of citizens vote, then a tie occurs in the event that j = k
2 of

them vote for alternative B, in which case the election is decided by a coin toss. Hence, the

probability that alternative A wins is

∑k
2
−1

j=0

(
k
j

)
+
(
k
k
2

) (
1
2

)

∑k
j=0

(
k
j

) =
1

2
.

Finally, if k = 0 citizens vote, then A also wins with probability 1
2 . �

P�		� 	� L���� 2: We simply differentiate P (α,n) with respect to α

∂

∂α
P (α,n) =



�n−12 �∑

k=1

(n− 1)!

(k!)2(n− 1− 2k)!
2kα2k−1(1− 2α)n−1−2k

−

�n−12 �∑

k=0

(n− 1)!

(k!)2(n− 1− 2k)!
α2k2(n− 1− 2k)(1− 2α)n−2−2k




+



�n−22 �∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
(2k + 1)α2k(1− 2α)n−2−2k

−

�n−22 �∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
α2k2(n− 2− 2k)(1− 2α)n−3−2k


 .
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Next, we combine the first summation with the last one and the second summation with

the third one,

∂

∂α
P (α, n) ≤ (n− 1)!



�n−12 �∑

k=1

2k

(k!)2(n− 1− 2k)!
α2k−1(1− 2α)n−1−2k

−

�n−22 �∑

k=0

2(n− 2− 2k)

k!(k + 1)!(n− 2− 2k)!
α2k+1(1− 2α)n−3−2k




+ (n− 1)!

�n−22 �∑

k=0

(
2k + 1

k!(k + 1)!(n− 2− 2k)!
−

2(n− 1− 2k)

(k!)2(n− 1− 2k)!

)
α2k(1− 2α)n−2−2k

= (n− 1)!



�n−12 �−1∑

k=0

2(k + 1)

((k + 1)!)2(n− 1− 2(k + 1))!
α2k+1(1− 2α)n−3−2k

−

�n−22 �∑

k=0

2(n− 2− 2k)

k!(k + 1)!(n− 2− 2k)!
α2k+1(1− 2α)n−3−2k




+(n− 1)!

�n−22 �∑

k=0

(
2k + 1

k!(k + 1)!(n− 2− 2k)!
−

2

(k!)2(n− 2− 2k)!

)
α2k(1− 2α)n−2−2k

≤ (n− 1)!

�n−12 �−1∑

k=0

(
2(n− 2− 2k)

k!(k + 1)!(n− 2− 2k)!
−

2(k + 1)

((k + 1)!)2(n− 1− 2(k + 1))!

)
α2k+1(1− 2α)n−3−2k

+ (n− 1)!

�n−22 �∑

k=0

(
2k + 1

k!(k + 1)!(n− 2− 2k)!
−

2

(k!)2(n− 2− 2k)!

)
α2k(1− 2α)n−2−2k.

Because
2(k + 1)

((k + 1)!)2(n− 1− 2(k + 1))!
−

2(n− 2− 2k)

k!(k + 1)!(n− 2− 2k)!
= 0

and
2k + 1

k!(k + 1)!(n− 2− 2k)!
−

2

(k!)2(n− 2− 2k)!
= −

1

k!(k + 1)!(n− 2− 2k)!
,

it follows that

∂

∂α
P (α,n) ≤ −(n− 1)!

�n−22 �∑

k=0

1

k!(k + 1)!(n− 2− 2k)!
α2k(1− 2α)n−2−2k < 0. �
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P�		� 	� P�	
	���	� 2: Since, from Lemma 2, P (α,n) is strictly decreasing in

α ∈ (0, 12), there is at most one solution to 1
2P (α, n) − c = 0. Moreover, a solution exists

if and only if 12P (0, n) − c > 0 and 1
2P (

1
2 , n)− c < 0. It is easy to verify that P (0, n) = 1

and 1
2P (

1
2 , n) ≡ c(n) as given in (6). Hence, there is a unique solution α∗(c, n) to equation

(3) if and only if c(n) < c < 1
2 . For α∗(c, n) to be part of an equilibrium however, it also

needs to satisfy: 0 < φt =
α∗(c,n)
λt

< 1 and 0 < φt′ =
α∗(c,n)
1−λt < 1, or combining the two:

α∗(c, n) < λt < 1− α∗(c, n). �

P�		� 	� L���� 3: We first show by induction that

c(n) =





1
2

n−1
2
−1∏

k=0

2k+1
2k+2 , if n is odd

1
2

n
2
−1∏
k=0

2k+1
2k+2 , if n is even.

(A-3)

Note that c(2) = c(3) = 1
4 , which is true by (6). Next, let the expression in (A-3) hold true

for some arbitrary n. By (6), observe that

c(n+ 1) =

{
n
n+1c(n), if n is odd

c(n), if n is even,
,

which coincides with the expression obtained from (A-3) for c(n + 1), completing the in-

duction argument.

Since 2k+1
2k+2 < 1, c(n) in (A-3) is clearly decreasing. Moreover, c(n) ≤ b(n) for some

sequence b(n) ≡
n∏
k=0

√
k+1
k+2 . Simple algebra shows b(n) = 1√

n+2
, which converges to 0.

Hence, lim
n→∞

c(n) = 0.

To prove that α∗(c, n) is decreasing in n, it suffices to prove P (α, n) is decreasing in n.

By definition,

P (α,n)− P (α, n+ 1) =

�n−12 �∑

k=0

(n− 1)!

(k!)2(n− 1− 2k)!
α2k(1− 2α)n−1−2k (A-4)

+

�n−22 �∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
α2k+1(1− 2α)n−2−2k −

�n2 �∑

k=0

n!

(k!)2(n− 2k)!
α2k(1− 2α)n−2k

−

�n−12 �∑

k=0

n!

k!(k + 1)!(n− 1− 2k)!
α2k+1(1− 2α)n−1−2k.

Before signing this expression, we suppose that n is odd, and re-write the third summa-
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tion:

�n2 �∑

k=0

n!

(k!)2(n− 2k)!
α2k(1− 2α)n−2k

=

n−1
2∑

k=0

[
1 +

2k

n− 2k

]
(n− 1)!

(k!)2(n− 1− 2k)!
α2k(1− 2α)n−2k

= (1− 2α)

n−1
2∑

k=0

(n− 1)!

(k!)2(n− 1− 2k)!
α2k(1− 2α)n−1−2k

+ 2α

n−1
2∑

k=1

(n− 1)!

(k − 1)!k!(n− 2k)!
α2k−1(1− 2α)n−2k

= (1− 2α)

n−1
2∑

k=0

(n− 1)!

(k!)2(n− 1− 2k)!
α2k(1− 2α)n−1−2k

+2α

n−1
2
−1∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
α2k+1(1− 2α)n−2−2k.

Inserting this into (A-4) and canceling terms yield

P (α,n)− P (α, n+ 1) = 2α

n−1
2∑

k=0

(n− 1)!

(k!)2(n− 1− 2k)!
α2k(1− 2α)n−1−2k

+ (1− 2α)

n−1
2
−1∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
α2k+1(1− 2α)n−2−2k

−

n−1
2∑

k=0

n!

k!(k + 1)!(n− 1− 2k)!
α2k+1(1− 2α)n−1−2k

=

n−1
2
−1∑

k=0

(
2

n− 1− 2k
+

1

k + 1

)
(n− 1)!

(k!)2(n− 2− 2k)!
α2k+1(1− 2α)n−1−2k

−

n−1
2∑

k=0

n!

k!(k + 1)!(n− 1− 2k)!
α2k+1(1− 2α)n−1−2k +

2(n− 1)!
(
n−1
2 !
)2 αn

=

n−1
2
−1∑

k=0

((n+ 1)− n)
(n− 1)!

k!(k + 1)!(n− 1− 2k)!
α2k+1(1− 2α)n−1−2k

+
2(n− 1)!
(
n−1
2 !
)2 αn −

n!
n−1
2 !(

n−1
2 + 1)!

αn > 0.
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Given that α∗(c, n) is decreasing in n and bounded below by 0, it converges to some α� ≥

0. Suppose α� > 0. Since P (α,n) is continuous in α, it follows that lim
n→∞

1
2P (α�, n)− c = 0,

or lim
n→∞

P (α�, n) = 2c.

We now argue that if α� > 0, then lim
n→∞

P (α�, n) = 0. To see this, let Xt be the number

of votes for alternative t (as in the text), and Y = XA −XB be the vote difference. Then,

P (α�, n) = Pr{Y = 0}+Pr{Y = 1}.

For a large n, we have Y →D Normal(0, 2nα�). Hence, as n → ∞, it follows that

Pr{Y = 0} → 0 and Pr{Y = 1} → 0, implying that P (α�, n) → 0. But this contra-

dicts lim
n→∞

P (α�, n) = 2c �= 0. Hence, α� = 0. The same exact arguments hold for an even

n.

The last part simply follows from (3), which holds for any n in a totally mixed strategy

equilibrium. �

P�		� 	� L���� 4: Note that (XA|XB) ∼ Binomial(n−XB,
α∗A(n)
1−α∗B(n)

), where
α∗A(n)
1−α∗B(n)

∈

(0, 1) since 0 < α∗t (n) < λt (and thus 0 < α∗A(n) + α∗B(n) < 1). Moreover, for a fixed XB,

since limn→∞ α∗t (n) = 0 by Lemma 3, it follows

lim
n→∞

[
(n−XB)

α∗A(n)
1− α∗B(n)

]
= mA.

Hence, (see Billingsley 1995, Theorem 23.2)

(XA|XB)
D
−→ Poisson(mA),

which is independent of XB. The same argument shows

(XB|XA)
D
−→ Poisson(mB).

Hence, the limiting distributions of XA and XB are independent, which further implies

(XA +XB)
D
−→ Poisson(mA +mB). �

P�		� 	� P�	
	���	� 3: Fix any pair of (λt, c) ∈ (0, 1) × (0,
1
2). By Proposition

2, there is a unique symmetric mixed-strategy BNE if and only if c ∈ (c(n), 12) and λt ∈

(α∗(c, n), 1− α∗(c, n)). Since as n grows, both c(n) and α∗(c, n) decrease and converge to

0 by Lemma 3, there exist two thresholds n′(c), n′′(λt) <∞ such that c ∈ (c(n), 12) for all

n > n′(c) and λt ∈ (α∗(c, n), 1−α∗(c, n)) for all n > n′′(λt). Define n = max{n′(c), n′′(λt)}.

Then, there exists a unique symmetric BNE for all n ≥ n.
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Part (a) follows from Proposition 1 and Lemma 3. To prove part (b), first note that

eq.(9) implies mI
A =mI

B. This means, after substituting for mI
A = mI

B =
M
2 , eq.(9) reduces

to ΦI(M2 , M2 ) = 2c, where ΦI(M2 , M2 ) =
∞∑
k=0

(M
2
)2ke−M

(k!)2 +
∞∑
k=0

(M
2
)2k+1e−M

k!(k+1)! by (8). Next, we

show that ΦI(M2 , M2 ) is strictly decreasing in M. Differentiation yields

d

dM
ΦI(

M

2
,
M

2
)) = e−M

[ ∞∑

k=1

1

22k
2kM2k−1

(k!)2
+ 2

∞∑

k=0

1

22(k+1)
(2k + 1)M2k

k!(k + 1)!

−
∞∑

k=0

1

22k
M2k

(k!)2
− 2

∞∑

k=0

1

22(k+1)
M2k+1

k!(k + 1)!

]

= e−M
[ ∞∑

k=0

1

22(k+1)
2(k + 1)M2(k+1)−1

((k + 1)!)2
+ 2

∞∑

k=0

1

22(k+1)
(2k + 1)M2k

k!(k + 1)!

−
∞∑

k=0

1

22k
M2k

(k!)2
− 2

∞∑

k=0

1

22(k+1)
M2k+1

k!(k + 1)!

]
.

Since the first and last summations cancel out, we have

d

dM
ΦI(

M

2
,
M

2
)) = e−M

[
2
∞∑

k=0

1

22(k+1)
(2k + 1)M2k

k!(k + 1)!
−

∞∑

k=0

1

22k
M2k

(k!)2

]

= e−M
∞∑

k=0

[
1
2(2k + 1)

k + 1
− 1

]
1

22k
M2k

(k!)2
< 0.

It is easy to verify that ΦI(0, 0) = 1 and limM→∞ΦI(M2 , M2 ) = 0, which imply

ΦI(0, 0)− 2c > 0 and lim
M→∞

[ΦI(
M

2
,
M

2
)− 2c] < 0.

Hence, there is a unique M I ∈ (0,∞) that satisfies ΦI(M2 , M2 ) = 2c. �

P�		� 	� P�	
	���	� 4: To prove part (a), suppose (φA, φB) is a symmetric BNE

in totally mixed strategies. Then, eq.(10) implies

E[PA(λAφA, (1− λA)φB)|A] = E[PB((1− λA)φB, λAφA)|B]. (A-5)

Next, we establish

E[PB(1− λA)φB, λAφA)|B] = E[PA(λAφB, (1− λA)φA)|A]. (A-6)
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To see this, note from (2) that

E[PB((1− λA)φB, λAφA)|B] =

�n−12 �∑

k=0

[(
n− 1

k, k, n− 1− 2k

)

×
r∑

i=1

2θi(1− λi)(λiφA)
k((1− λi)φB)

k(1− λiφA − (1− λi)φB)
n−1−2k

]

+

�n−22 �∑

k=0

[(
n− 1

k, k + 1, n− 2− 2k

)

×
r∑

i=1

2θi(1− λi)(λiφA)
k+1((1− λi)φB)

k(1− λiφA − (1− λi)φB)
n−2−2k

]
.

Now, by symmetry of the prior

r∑

i=1

2θi(1− λi)(λiφA)
k((1− λi)φB)

k(1− λiφA − (1− λi)φB)
n−1−2k

=
r∑

i=1

[
2θiλr+1−i(λr+1−iφB)

k((1− λr+1−i)φA)
k(1− λr+1−iφB − (1− λr+1−i)φA)

n−1−2k
]

and

r∑

i=1

2θi(1− λi)(λiφA)
k+1((1− λi)φB)

k(1− λiφA − (1− λi)φB)
n−2−2k

=
r∑

i=1

[
2θiλr+1−i(λr+1−iφB)

k((1− λr+1−i)φA)
k+1(1− λr+1−iφB − (1− λr+1−i)φA)

n−2−2k
]
.

Substituting these equalities into the above expression for E[PB((1−λA)φB, λAφA)|B] yields

(A-6). Next, combine (A-5) and (A-6) to get

E[PA(λAφA, (1− λA)φB)|A] = E[PA(λAφB, (1− λA)φA)|A].

To derive a contradiction to this, suppose w.l.o.g. that φA > φB. We show that this implies

E[PA(λAφA, (1− λA)φB)|A]−E[PA(λAφB, (1− λA)φA)|A] < 0.
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From (2) we have

E[PA(λAφA, (1− λA)φB)|A]−E[PA(λAφB, (1− λA)φA)|A]

=

�n−12 �∑

k=0

[(
n− 1

k, k, n− 1− 2k

) r∑

i=1

2θiλi(λi(1− λi)φAφB)
k

×
(
(1− λiφA − (1− λi)φB)

n−1−2k − (1− λiφB − (1− λi)φA)
n−1−2k

)]

+

�n−22 �∑

k=0

[(
n− 1

k, k + 1, n− 2− 2k

) r∑

i=1

2θiλi(λi(1− λi)φAφB)
k

×
(
(1− λi)φB(1− λiφA − (1− λi)φB)

n−2−2k − (1− λi)φA(1− λiφB − (1− λi)φA)
n−2−2k

)]
.

Both of the double summations in this expression are negative. To see that the first one is

negative, consider the inner summation

r∑

i=1

2θiλi(λi(1− λi)φAφB)
k

×
(
(1− λiφA − (1− λi)φB)

n−1−2k − (1− λiφB − (1− λi)φA)
n−1−2k

)
.

Use symmetry of the prior to combine terms 1 and r, 2 and r − 1, and so on, to get

� r+12 �∑

i=1

2θi(2λi − 1)(λi(1− λi)φAφB)
k

×
(
(1− λiφA − (1− λi)φB)

n−1−2k − (1− λiφB − (1− λi)φA)
n−1−2k

)
.

(If r is odd, the expression is still valid in this case since the term involving λ� r+12 �
= 1

2

is automatically zero.) If k = n−1
2 , then each term in this summation is evidently zero. If

k < n−1
2 , then each term is negative. To see this, note that 2λi − 1 < 0 because we are

summing over the left half of the distribution. Moreover,

φA > φB ⇒ (1− 2λi)φA > (1− 2λi)φB

⇒ 1− λiφA − (1− λi)φB > 1− λiφB − (1− λi)φA

⇒ (1− λiφA − (1− λi)φB)
n−1−2k > (1− λiφB − (1− λi)φA)

n−1−2k.

A similar argument shows that the second double summation in the above expression is also

negative.
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The proof of part (b) closely follows the proof of its counterpart in Proposition 1. Since,

by part (a), each citizen votes with the same probability, φ, the probability that k citizens

will turn out to vote is
(
n
k

)
(1 − φ)n−kφk. Moreover, since a citizen votes for alternative

t with probability λtφ, the probability that alternative A wins when an odd number k of

citizens vote is (
n
k

)
(1− φ)n−kφk

(∑k−1
2

j=0

(
k
j

)
(λAφ)

k−j((1− λA)φ)
j

)

(
n
k

)
(1− φ)n−kφk

(∑k
j=0

(
k
j

)
(λAφ)k−j((1− λA)φ)j

) .

Factoring φk out of the summations and cancelling like terms in the numerator and denom-

inator yields
∑k−1

2

j=0

(
k
j

)
λk−jA (1− λA)

j

∑k
j=0

(
k
j

)
λk−jA (1− λA)j

.

Since
∑k
j=0

(
k
j

)
λk−jA (1− λA)

j = 1, the probability that A wins is equal to

k−1
2∑

j=0

(
k

j

)
λk−jA (1− λA)

j,

which is greater than 1
2 if and only if λA > 1

2 .

If an even number k > 0 of citizens vote, then a tie occurs in the event that j = k
2 of

them vote for alternative B, in which case the election is decided by a coin toss. Hence, the

probability that alternative A wins is

k
2
−1∑

j=0

(
k

j

)
λk−jA (1− λA)

j +

(
k
k
2

)
λ
k
2

A(1− λA)
k
2

(
1

2

)
.

To evaluate this probability, note that

k∑

j=0

(
k

j

)
λk−jA (1− λA)

j =

k
2
−1∑

j=0

[(
k

j

)
λk−jA (1− λA)

j +

(
k
k
2

)
λ
k
2

A(1− λA)
k
2

(
1

2

)]

+
k∑

j=k
2
+1

[(
k

j

)
λk−jA (1− λA)

j +

(
k
k
2

)
λ
k
2

A(1− λA)
k
2

(
1

2

)]
= 1.

Since
(
k
j

)
=
(
k
k−j
)
, the probability that A wins is strictly greater than 1

2 if and only if

λA > 1
2 .

Finally, if k = 0 citizens vote, then A wins with probability 1
2 . �
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P�		� 	� P�	
	���	� 5: Recall from (11)

Q(φ, n) =

� r+12 �∑

i=1

2θiT (φ, n|λA = λi),

where T (φ, n|λA = λi) is defined in (12). First, we show that Q(φ, n) is decreasing in φ

for φ ∈ (0, 1). To do so, it suffices to show each term T (φ, n|λA = λi) is decreasing in φ.

Differentiating yields

∂

∂φ
T (φ, n|λA = λi) = 2

�n−12 �∑

k=1

(n− 1)!

(k − 1)!k!(n− 1− 2k)!
(λi(1− λi))kφ2k−1(1− φ)n−1−2k

−

�n−22 �∑

k=0

(n− 1)!

(k!)2(n− 2− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2−2k

+ 2λi(1− λi)

�n−22 �∑

k=0

(2k + 1)(n− 1)!

k!(k + 1)!(n− 2− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2−2k

− 2λi(1− λi)

�n−32 �∑

k=0

(n− 1)!

k!(k + 1)!(n− 3− 2k)!
(λi(1− λi))kφ2k+1(1− φ)n−3−2k.

Since

2

�n−12 �∑

k=1

(n− 1)!

(k − 1)!k!(n− 1− 2k)!
(λi(1− λi))kφ2k−1(1− φ)n−1−2k

= 2λi(1− λi)

�n−12 �−1∑

k=0

(n− 1)!

(k)!(k + 1)!(n− 3− 2k)!
(λi(1− λi))kφ2k+1(1− φ)n−3−2k,
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we have

∂

∂φ
T (φ, n|λA = λi) = −

�n−22 �∑

k=0

(n− 1)!

(k!)2(n− 2− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2−2k

+ 2λi(1− λi)

�n−22 �∑

k=0

(2k + 1)(n− 1)!

k!(k + 1)!(n− 2− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2−2k

≤ −

�n−22 �∑

k=0

(n− 1)!

(k!)2(n− 2− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2−2k

+
1

2

�n−22 �∑

k=0

(2k + 1)(n− 1)!

k!(k + 1)!(n− 2− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2−2k

= −
1

2

�n−22 �∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2−2k < 0.

where we use the fact that 2λi(1− λi) ≤ 1
2 .

Given that Q(φ, n) is decreasing in φ ∈ (0, 1), (13) has a unique solution φ∗(n) ∈ (0, 1)

if and only if 1
2Q(0, n) − c > 0 and 1

2Q(1, n) − c ≤ 0. Noting Q(0, n) = 1 and defining

c(n) = 1
2Q(1, n), the result follows. �

P�		� 	� L���� 5: When n is odd, note that

c(n) = c(n)2n
r∑

i=1

θi(λi)
n+1
2 (1− λi)

n−1
2 < c(n)2n

r∑

i=1

θiλi
(
1

4

)n−1
2

= c(n)2n
1

2

(
1

4

)n−1
2

= c(n).

The same argument proves the case for n even. �

P�		� 	� L���� 6: Since Q(φ, n) is decreasing in φ, it suffices to show Q(φ, n) is

decreasing in n for a fixed φ ∈ (0, 1). To do so, we prove that each term T (φ, n|λA = λi) is

decreasing in n. But this just mimics the proof of the similar result for α∗(n) in part (ii) of
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Lemma 3. In particular,

T (φ, n|λA = λi)− T (φ, n+ 1|λA = λi) =

�n−12 �∑

k=0

(n− 1)!

(k!)2(n− 1− 2k)!
(λi(1− λi))kφ2k(1− φ)n−1−2k

+ 2

�n−22 �∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
(λi(1− λi))k+1φ2k+1(1− φ)n−2−2k

−

�n2 �∑

k=0

n!

(k!)2(n− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2k

− 2

�n−12 �∑

k=0

n!

k!(k + 1)!(n− 1− 2k)!
(λi(1− λi))k+1φ2k+1(1− φ)n−1−2k.

For an odd n, note that

�n2 �∑

k=0

n!

(k!)2(n− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2k

=

n−1
2∑

k=0

(
1 +

2k

n− 2k

)
(n− 1)!

(k!)2(n− 1− 2k)!
(λi(1− λi))kφ2k(1− φ)n−2k

= (1− φ)

n−1
2∑

k=0

(n− 1)!

(k!)2(n− 1− 2k)!
(λi(1− λi))kφ2k(1− φ)n−1−2k

+ 2φ

n−1
2
−1∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
(λi(1− λi))k+1φ2k+1(1− φ)n−2−2k.

Inserting this fact and simplifying terms yield

T (φ, n|λA = λi)− T (φ, n+ 1|λA = λi) =

n−1
2∑

k=0

(n− 1)!

(k!)2(n− 1− 2k)!
(λi(1− λi))kφ2k+1(1− φ)n−1−2k

+ 2λi(1− λi)

n−1
2
−1∑

k=0

(n− 1)!

k!(k + 1)!(n− 2− 2k)!
(λi(1− λi))kφ2k+1(1− φ)n−1−2k

− 2λi(1− λi)

n−1
2∑

k=0

n!

k!(k + 1)!(n− 1− 2k)!
(λi(1− λi))kφ2k+1(1− φ)n−1−2k > 0.

The same exact argument follows for n even. Finally, similar arguments for lim
n→∞

α∗(n) =

0 show lim
n→∞

φ∗(n) = 0. �

36



P�		� 	� L���� 7: This uses the exact lines in the proof of Lemma 4, except that

we replace αA(n) with λAφ
∗(n), and αB(n) with λBφ∗(n). �

P�		� 	� P�	
	���	� 6: The existence of a unique symmetric BNE follows from

Proposition 5, Lemma 5, and the observation that limn→∞ c(n) = 0 by part (i) of Lemma

3. Now, we prove the remainder of the proposition.

(a) Observe that XA ∼ Poisson(λAM
U ) and XB ∼ Possion((1 − λA)M

U ). Now, for

λA = λi,

Pr{A wins|λi} >
1

2

⇔ Pr{XA > XB}+
1

2
Pr{XA = XB} > Pr{XB > XA}+

1

2
Pr{XB = XA}

⇔ Pr{XA > XB} > Pr{XB > XA}

⇔
∞∑

j=0

∞∑

k=j+1

f(j|(1− λi)MU )f(k|λiMU ) >
∞∑

j=0

∞∑

k=j+1

f(j|λiMU )f(k|(1− λi)MU ).

Now, suppose λi > 1
2 and consider the following sequence of implications where k �= j:

λi >
1

2
⇔ λi > (1− λi) ⇔ (λi)k−j > (1− λi)k−j

⇔ (λiMU )k((1− λi)MU )j > (λiMU )j((1− λi)MU )k

⇔ f(j|(1− λi)MU )f(k|λiMU ) > f(j|λiMU )f(k|(1− λi)MU )

⇔
∞∑

j=0

∞∑

k=j+1

f(j|(1− λi)MU )f(k|λiMU ) >
∞∑

j=0

∞∑

k=j+1

f(j|λiMU )f(k|(1− λi)MU ).

The same argument shows that Pr{A wins|λi} < 1
2 if and only if λi < 1

2 , and

Pr{A wins|λi} = 1
2 if and only if λi = 1

2 .

(b),(c) Here, we first prove part (c). The fact that mU
A = λAM

U , and mU
B = λBMU

follows from Lemma 7. Moreover, one can easily show as in the proof of part (b)

of Proposition 3 that ΦU (M |λ, θ) is strictly decreasing in M ; ΦU (0|λ, θ) = 1; and

(3) limM→∞ΦU (M |λ, θ) = 0. Hence, there exists a unique MU ∈ (0,∞) that solves

ΦU (M |λ, θ) = 2c. From here, it also follows that MU is strictly decreasing in c, and

becomes arbitrarily large as c→ 0. Together with part (a), this proves part (b). �

P�		� 	� P�	
	���	� 7: Suppose (4) and (5) hold so that a symmetric totally-mixed

strategy BNE obtains in either informational setting. Each part is proven in turn.
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(a) Suppose n <∞. Since for λA = λi, CI(n|λA = λi) = 2ncα∗(n) by Proposition 1, and

CU (n|λA = λi) = ncφ∗(n) by Proposition 4, it suffices to show that α∗(n) > φ∗(n)
2 .

Define φ̂ = φ
2 and P̂A(φ̂|n, λA = λi) ≡ PA(λ

i2φ̂, (1− λi)2φ̂, n). Then,

P̂A(φ̂|n, λA = λi) =

�n−12 �∑

k=0

(
n− 1

k, k, n− 1− 2k

)
22k(λi(1− λi))kφ̂

2k
(1− 2φ̂)n−1−2k

+

�n−22 �∑

k=0

(
n− 1

k, k + 1, n− 2− 2k

)
22k+1(λi)k(1− λi)k+1φ̂

2k+1
(1− 2φ̂)n−2−2k.

Since 2λi(2(1− λi)) < 1, we have

P̂A(φ̂|n, λA = λi) <

�n−12 �∑

k=0

(
n− 1

k, k, n− 1− 2k

)
φ̂
2k
(1− 2φ̂)n−1−2k

+ 2(1− λi)

�n−22 �∑

k=0

(
n− 1

k, k + 1, n− 2− 2k

)
φ̂
2k+1

(1− 2φ̂)n−2−2k.

Moreover, since
r∑
i=1

θiλi = 1
2 and

r∑
i=1

θiλi2(1− λi) < 1
2 , it follows that

r∑

i=1

θiλiP̂A(φ̂|n, λA = λi) =
1

2
Q(2φ̂, n) <

1

2
P (φ̂, n).

Finally, Lemma 2 and the proof of Proposition 5 established that both P (φ̂, n) and

Q(2φ̂, n) are decreasing in φ̂, implying that α∗ > φ∗

2 where 1
2P (α

∗, n) − c = 0 and
1
2Q(2(

φ∗

2 ), n)− c = 0.

For n → ∞, we have 2nα∗(n) → MI and nφ∗(n) → MU by definition; and hence

CI(φ∗(n), n|λA = λi)→ cM I and CU (φ∗(n), n|λA = λi)→ cMU , where, the limit turnouts

under the informed and informed regimes, MI andMU satisfyΦI(M2 , M2 ) = 2c andΦ
U (M |λ, θ) =

2c, respectively. Since, from the proofs of Propositions 3 and 6, both ΦI(M2 , M2 ) and

ΦU (M |λ, θ) are strictly decreasing in M , ΦI(0, 0) = ΦU (0|λ, θ) = 1, and
r∑
i=1

θiλi = 1
2

and
r∑
i=1

θiλi2(1−λi) < 1
2 by definition, a similar comparison to the case with n <∞ implies

MI > MU .

(b) Suppose n < ∞. From Proposition 1 and 4, it is obvious that BI(φ, n|λA = λi) <

BU (φ, n|λA = λi), and hence B
I
(θ, λ, n) < B

U
(θ, λ, n). This result also holds for
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n → ∞, because BI(φ,n|λA=λi)
BU (φ,n|λA=λi)

→
1

2

Pr{A wins|λA=λi}λi+Pr{B wins|λA=λi}(1−λi)
< 1 by

Proposition 4.

(c) It directly follows from part (a) and (b). �

P�		� 	� P�	
	���	� 8. Let θ be a symmetric distribution over a fixed support

λ, and φ∗(θ) be the equilibrium voting probability, which satisfies (13). Decomposing the

summation for some i0 ≤
⌊
r+1
2

⌋
, we re-write (13)

i0−1∑

i=1

θiT (φ∗(n), n|λA = λi)+(
1

2
−

� r+12 �∑

i�=i0
θi)T (φ∗(n), n|λA = λi0)+

� r+12 �∑

i=i0+1

θiT (φ∗(n), n|λA = λi) = c.

(A-7)

Totally differentiating both sides of (A-7) w.r.t. some θj (j �= i0, and j ≤
⌊
r+1
2

⌋
), we obtain

∂

∂θj
φ∗(θ) =

T (φ∗(n), n|λA = λi0)− T (φ∗(n), n|λA = λj)

θjTφ(φ
∗(θ), n||λA = λj) + (12 −

� r+12 �∑
i�=i0

θi)Tφ(φ
∗(θ), n|λA = λi0)

(A-8)

To sign φ∗j(θ), first recall from the proof of Proposition 5 that ∂
∂φT (.) < 0. Moreover,

it is easy to verify from (12) that T (φ∗(n), n|λA = λi) is increasing in λi for λi < 1
2 ,

stationary at λi = 1
2 , and decreasing in λi for λi > 1

2 . Thus, for any j < i0, we have

T (φ∗(n), n|λA = λi0) − T (φ∗(n), n|λA = λj) > 0, which implies ∂
∂θj

φ∗(θ) < 0. A similar

argument for any i0 < j ≤
⌊
r+1
2

⌋
shows that ∂

∂θj
φ∗(θ) > 0.

These two observations reveal that if θ′ and θ are two symmetric distributions such that

θ′ is a mean-preserving spread over θ as defined in section 6, then φ∗(θ′) ≤ φ∗(θ), proving

part (a).

To prove part (b), we recall the definition B(θ, λ, n) in section 5, and w.l.o.g., use a

similar decomposition as in part (a). This implies

B(θ, λ, φ, n) =
i0−1∑

i=1

θiB(φ, n|λA = λi)+ (
1

2
−

� r+12 �∑

i�=i0
θi)B(λi0 , φ, n)+

� r+12 �∑

i=i0+1

θiB(φ, n|λA = λi)

(A-9)

where

B(φ, n|λA = λi) = Pr{A wins|λA = λi}λin+Pr{B wins|λA = λi}(1− λi)n. (A-10)
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Moreover, we have

Pr{A wins|λA = λi} = (A-11)
n∑

k=0

n∑

k′=k+1

(
n

k, k′, n− k − k′

)
(λiφ∗(θ))k

′

((1− λi)φ∗(θ))k(1− φ∗(θ))n−k−k
′

Pr{B wins|λA = λi} = Pr{A wins|λA = 1− λi}.

Inserting (A-11) into (A-10), and then into (A-9) yields

B(θ, φ∗(θ)) = B(θ, λ, φ∗(θ), n).

Differentiating w.r.t. some θj, j ∈ {1, ..., i0} implies

∂

∂θj
B(θ, φ∗(θ)) +

∂

φ
B(θ, φ∗(θ))

∂

∂θj
φ∗(θ). (A-12)

It is easy to show that ∂
φB(θ, φ

∗(θ)) > 0 because ∂
φB(φ, n|λA = λi) > 0, and

∂

∂θj
B(θ, φ∗(θ))

{
≥ 0 if 1 ≤ j < i0
≤ 0 if i0 < j ≤

⌊
r+1
2

⌋ .

From the proof of part (a), this means for 1 ≤ j < i0, while the first term in (A-12) is

positive, the second term is negative. However, a tedious algebra shows that it is overall

positive. A similar argument shows that the overall sign is negative for i0 < j ≤
⌊
r+1
2

⌋
.

Together these two observations prove part (b).

The last part directly follows from part (a) and (b). �
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