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Abstract

This article establishes a tenuous link between ability and relative well-being in team-
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1 Introduction

In a knowledge-driven world with increasingly complex problems, teamwork has become

the norm across various settings. For instance, organizations of all sizes frequently rely on

problem-solving teams for their critical decisions (Postrel, 2002). Educators encourage group

assignments in classrooms (Thom, 2020). And, researchers collaborate on projects more than

ever (Jones, 2021).

Despite its prevalence, however, there is compelling evidence that teamwork is disliked

by many of its participants. For example, a Dropbox survey of 2,000 workers reveals that

less than half enjoy working in a team, reporting the main difficulty to be “freeloaders” not

pulling their weight.1 Similarly, a University of Phoenix survey of 1,000 U.S. residents shows

that 95 percent of those who have worked on a team believe teamwork is crucial in the work-

place. Yet more than three-quarters of employees would prefer to work alone.2 In education,

Thom (2020) reviews the literature on groupwork efficacy and concludes that “high-achieving

students generally dislike group assignments, while low-achieving students embrace them...

Free riders – i.e., individuals who contribute little to the group but often incur just as little,

if any, real consequence – are perhaps their most common grievance...Distaste among high-

achieving students may stem from the likelihood that group assignments tend to redistribute

performance, lowering their grades while raising them for low-achieving students and free

riders.”

This evidence suggests that individuals dislike teams primarily because they worry about

an unfair workload allocation and, in turn, their well-being relative to others – a comparison

that seems especially pertinent in teamwork (Gill and Stone, 2015). Although how individuals

determine their relative well-being remains unsettled in the behavioral literature (Camerer et

al., 2004), it seems plain that better performers will at least expect to fare no worse than poor

performers in a team. In particular, endowed with superior skills, more able employees,

students, and researchers will probably anticipate pulling more weight in a group project

but resent doing so to the point of feeling “exploited” by their less able counterparts. Such

resentment may then turn into a reluctance to participate in future teams.

In this article, I provide a first systematic analysis of relative payoffs in teams. I will, how-

1https://www.hrmagazine.co.uk/content/news/half-hate-teamwork.
2https://www.prnewswire.com/news-releases/university-of-phoenix-survey-reveals-nearly-seven-in-ten-

workers-have-been-part-of-dysfunctional-teams-187090161.html.
For additional evidence, see also https://www.prweb.com/releases/2017/06/prweb14452679.htm.
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ever, do so without directly introducing social preferences to identify the source of inequity

concerns and bridge the gap with the extant literature on teamwork (reviewed below).3

My model of problem-solving teams is a simple variation of Lee and Wilde’s (1980) R&D

race. Rather than competing, a group of agents is asked to work together for a breakthrough,

e.g., a new product design. Time is continuous, and there is no deadline. At each instant

without success, agents privately choose their efforts. Agents do not accumulate knowl-

edge, so their optimal efforts remain stationary, but they may learn from each other (research

spillover), depending on transparency in the working relationship. The team dissolves at the

first successful attempt, upon which each member obtains a fixed and equal reward (pure

teamwork). The only heterogeneity among agents is their publicly known abilities, where

higher ability means a lower marginal cost of effort.4

Under the standard cost assumptions, i.e., increasing and convex, there is a unique (Nash)

equilibrium in this model. Although, as expected, higher-ability agents work harder in equi-

librium, they do not always fare better. I show that regardless of the rest of the team, any

two agents’ equilibrium payoffs are in reverse order to their abilities when the cost function is

(locally) log-concave between their equilibrium efforts and in the same order to their abilities

when the cost function is (locally) log-convex. For expositional convenience, I say that an

agent views the team project as “easy” if his cost function is log-concave at his equilibrium

effort and as “challenging” if it is log-convex. In other words, an agent views the project as

easy if a marginal increase in his equilibrium effort would increase his marginal cost more

than his total cost, and vice versa for a challenging project.5 With this language, any two

agents’ equilibrium payoffs are reverse-ordered to their abilities if both perceive the project

easy in-between their efforts and same-ordered if they perceive it challenging. Intuitively,

unable to observe others’ efforts, higher-ability agents cannot commit to not overworking for

an easy project.6 The same is not true for a challenging project because the steep marginal

cost endows higher-ability agents with some commitment to shifting the workload to others

in equilibrium.

3Gill and Stone (2015) incorporate such preferences into teamwork with homogenous agents.
4The exogenous reward can be a bonus promised to team employees, the grade assigned to group students, or

the equal credit attributed to collaborating researchers. I establish the robustness of my findings to heterogenous
rewards and multiple breakthroughs in Appendix B.

5In a sense, the agent’s perception of the project reflects whether he views its success as a downhill or an uphill
battle at his equilibrium effort. This project classification is different from Ozerturk and Yildirim’s (2021), which I
discuss in the analysis.

6Formally, a higher-ability agent ends up with a greater marginal cost of effort in equilibrium.
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Note that under a globally log-concave cost such as the iso-elastic specification often

used in the teamwork literature, the above result implies that equilibrium payoffs would

be reverse-ordered to abilities in the entire team. Such a payoff reversal under a globally log-

concave cost was first observed in a two-agent setting by Bowen et al. (2019), which I further

discuss below. While not my main focus here, I add to their result that the payoff reversal also

holds under a general cost function if agents expect to exert minimal effort and thus view the

project as easy. And this will be the case if agents are sufficiently patient or low ability, or

attach a low enough value to success.

However, the team’s payoff order is surprisingly rich when the cost function is not glob-

ally log-concave, though still increasing and convex, and agents’ efforts are significant.7 In

particular, as mentioned above, the payoffs would be same-ordered as abilities if the cost

function is (locally) log-convex such that all agents view the project as challenging. Perhaps

more interesting is that if the cost function has a single log-inflection point (log-concave turn-

ing log-convex), there are 2n−1 possible strict equilibrium payoff orders for heterogeneous

n-member teams, the best-off member being either the most or the least able in each.8 If

the cost function has multiple log-inflections, payoff orders in which medium-ability agents

receive the highest payoff are also possible.

Such ambiguity in relative payoffs in teams makes this article’s main point: there is a weak

relationship, if any, between the team’s ability and payoff rankings. Put differently, the cost

specification plays an essential role in:

• team incentives of heterogeneous agents (perhaps, more than one would think),

• identifying potential equity and fairness concerns in the team, and

• determining agents who are more eager to team up.9

These observations raise two questions: how should agents of heterogeneous abilities

be matched into teams to maximize their average payoff? Would inequity be necessarily

concerning in such a team?

7As shown in the analysis, standard cost assumptions, i.e., increasing and convex, put little structure on its
log properties. For instance, straightforward extensions of the iso-elastic cost can readily admit multiple log-
inflections because the sum of two log-concave functions need not be log-concave.

8More precisely, Proposition 2 establishes that a payoff order can emerge as equilibrium for some ability profile
if and only if the best-off member in any subteam is the least or the most able. Note that despite their richness,
n!− 2n−1 payoff orders are ruled out.

9These issues are much less relevant in homogenous-ability teams, especially when the focus is on symmetric
equilibrium.
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In a second-best world with unobservable efforts, the designer, e.g., an employer or a

teacher, would group individuals to equalize their equilibrium marginal costs. Interestingly,

such an allocatively efficient matchup would also equalize individual payoffs in my model.

Thus, efficiency need not create inequity in carefully composed teams. However, because

they are designed to control the free-rider problem, second-best teams must have the “right”

size and members with sufficiently diverse abilities. Specifically, the maximum team size is

the number of log-inflections plus one. The role of log-inflections in team design further im-

plies that second-best teams will often have members with differing perceptions of the joint

project, some on the log-concave and others on the log-convex part of their cost in equilib-

rium. For instance, with a unique log-inflection cost, the second-best team will have exactly

two heterogeneous members – one viewing the project as easy and the other as challenging.

On the other hand, there is no second-best team with heterogeneous members for a globally

log-concave cost.

Finally, I investigate how team members respond to transparency in the workplace, fa-

cilitating research spillover. I find that despite the free-riding, transparency creates an en-

dogenous effort complementarity in the team and is desired by members of all abilities. But,

much like the payoff order, whether higher- or lower-ability agents are motivated more by

transparency is ambiguous, depending now on the log-concavity of marginal cost.

Related Literature. This article is closest to those that model teamwork as a dynamic

public good provision with complete information. These articles characterize non-stationary

team dynamics when agents accumulate effort/contribution toward a pre-specified project

size, e.g., Admati and Perry (1991), Marx and Matthews (2000), Compte and Jehiel (2003),

Yildirim (2006), Kessing (2007), Georgiadis (2015), Bhattacharya et al. (2017), and Bowen et al.

(2019).10 However, with few exceptions, their models assume ex ante homogenous agents, so

payoff ordering is a nonissue. As Bowen et al. nicely put it: “...little is known about this [free-

riding] problem when agents are heterogeneous. We begin by studying a simple two-agent

model.”

Bowen et al.’s two-agent model exhibits effort accumulation, creating intertemporal strate-

gic complementarity. They assume a globally log-concave cost and, though not their primary

focus, find in their Propositions 2 and 9 a similar payoff reversal to one here: the low-cost

10I briefly consider non-stationary dynamics with multiple breakthroughs in Appendix B. Non-stationary team
dynamics also arise in models with incomplete information when agents learn about the project’s or teammates’
potentials over time, e.g., Bonatti and Horner (2011), Guo and Roesler (2018), and Cetemen et al. (2020). They,
too, mostly assume ex-ante homogenous agents.
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agent obtains a lower discounted payoff. In comparison, I assume away effort accumulation

for tractability and study the payoff ranking and optimal composition in n-agent teams under

general cost. I show, among others, that the opposite payoff ranking obtains in the presence

of (local) log-convexity, and the exact ranking can be highly non-monotone in ability, depend-

ing crucially on the number of log-inflections in the cost function. As such, medium-ability

agents can be the best-off in some teams – a case that would not emerge with only two agents.

Equally importantly, I further explore efficient team composition and the role of transparency

in team incentives.11

Employing a similar model to one here, Ozerturk and Yildirim (2021) also uncover a pay-

off reversal in heterogeneous teams. But the driving force in their case is the endogenous re-

ward in the form of credit attribution by the public. For instance, they obtain no payoff rever-

sal under the iso-elastic cost when it is sufficiently convex, e.g., the cubic cost. Here, keeping

up with the extant literature, I assume agents receive exogenous rewards from success.

In terms of team design, this article complements those that show the optimality of asym-

metric incentive pays for symmetric team members when production technology exhibits

complementaries (e.g., Segal, 2003; Winter, 2004; Bose et al., 2010). In the absence of incentive

pays, I find that asymmetric team members receive symmetric payoffs in allocatively efficient

teams when their efforts are substitutes. In terms of team composition, this article comple-

ments Franco et al. (2011), Kaya and Vereshchagina (2014), Bel et al. (2015), Bonatti and

Rantakari (2016), and Glover and Kim (2021), among others, in arguing that the free-riding

problem can be less severe in heterogeneous teams.

In particular, within a Lee-Wilde type model, Bonatti and Rantakari (2016) explore agents’

incentives to develop projects (or solutions) for the organization when they have conflicting

preferences on which one to adopt. In their benchmark analysis, which is closest to my team-

work setting, the authors allow two symmetric agents to choose the projects collectively and

adopt the first developed. They show that agents would agree to pursue different projects

to alleviate the free-rider problem in developing them. In my model, agents are exogenously

assigned to the same project, and the free-rider problem is mitigated by having those with

sufficiently diverse abilities work on it.

Finally, this article contributes to the recent debate on the value of peer transparency or

11The payoffs of heterogeneous agents have also been studied in static models of public good provision. In
their seminal paper, Bergstrom et al. (1986) show that when agents differ only in income, they receive the same
payoff in the unique interior equilibrium. In particular, higher-income contributors are never worse off than
lower-income individuals.
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close working relationship in teamwork. Several studies, including Winter (2010), Bose et

al. (2010), and Bag and Pepito (2012), have argued that transparency is valuable to an or-

ganization only if agents’ efforts are complementary. With substitute efforts, transparency

exacerbates free-riding and is undesirable. Although efforts are substitutes in my model,

transparency is preferred by heterogeneous agents. Transparency encourages agents of all

abilities to work harder despite their free-riding incentives by facilitating research spillover

and speeding up the project’s completion.

The remainder of the article is organized as follows. Section 2 lays out the model. Section 3

establishes the unique equilibrium and shows the weak relationship between the team’s abil-

ity and payoff rankings. Section 4 explores the optimal team design. Section 5 determines the

incentive effect of transparency that facilitates research spillover. Finally, Section 6 concludes.

The Appendix contains the proofs omitted from the main text as well as the extensions to

heterogeneous rewards and multiple breakthroughs.

2 Model

My formal framework builds on Lee and Wilde’s (1980) R&D race. Instead of racing, a group

of n > 1 risk-neutral agents is asked to work together on a joint project toward a break-

through.12 They continuously choose their effort levels over an infinite horizon. Effort is

costly and unobservable to others. Let xi(t) and ci(xi(t)) represent agent i’s nonnegative flow

effort and its cost at time t, respectively. For ease of comparative statics, I posit a separable

cost function:13

ci(x) =
c(x)

ai
, (1)

where

c′ > 0, c′′ > 0, and c′′′ ≥ 0, with c(0) = c′(0) = 0 and c′(∞) = ∞. (A1)

As usual, the cost of effort is increasing and convex, with the cost of negligible effort being

negligible. (A1) will guarantee a unique and interior equilibrium, and is satisfied by many

cost functions, including c(x) = xk for k ≥ 2, c(x) = xk + xm for k, m ≥ 2, and c(x) = xkexm

for k ≥ 2 and m ≥ 0. I will call the parameter ai > 0 agent i’s “ability” because higher ability

implies a uniformly lower marginal cost: c′i(x) < c′j(x) for ai > aj and all x > 0. Agents’

12In Appendix B, I show the robustness of my results to joint projects that require two successive breakthroughs,
perhaps building on each other, for completion.

13The separable cost simplifies the exposition but is not essential for my results. As will be seen below, the
model is rich enough even with separability.
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abilities are publicly known, perhaps, because of prior interactions and achievements, ruling

out any reputational concerns.

Similar to Lee and Wilde, I assume no knowledge accumulation for agents, which allows

me to drop the time index and focus on their stationary strategies, xi. Agents may, however,

learn from each other. Following Kamien et al. (1992) on research joint ventures, agent i’s rate

of discovery is given by

yi = xi + β ∑
j 6=i

xj, (2)

where β ∈ [0, 1] is the rate of research spillover. Later, I will interpret β as the level of trans-

parency within the team: with probability β, agent i may get inspired by teammates’ attempts

at discovery.14,15

Given the stationary strategies, agent i’s random time for the breakthrough is exponential

with rate yi. Consequently, the team’s random time for the breakthrough is also exponential

with the aggregate rate:

∑
i

yi = αX,

where

α = 1+ (n− 1)β and X = ∑
i

xi.

Here, X is the total effort, and α ∈ [1, n] is the aggregate impact of one’s effort on the team’s

discovery rate. The project is completed, and the team dissolves as soon as the breakthrough

is made. Upon completion, each agent receives an exogenous reward v > 0 and zero, other-

wise. Thus, the only source of heterogeneity for agents is the marginal cost of effort, though I

also show the robustness of my results to heterogeneous rewards in Appendix B. I will some-

times refer to the team as a partnership in which agents equally share a fixed total prize V,

i.e., v = V/n.16 Agents discount the future benefits and costs at a common rate r > 0.

14The fact that the discovery rate, yi, is linear in efforts and not directly dependent on abilities is without loss. I
could let yi = Ri(xi)+ β ∑j 6=i Rj(xj) for some strictly increasing and concave function Ri; e.g., Ri(xi) = aixi. Then,
by a change of variables: xi := R−1

i (xi), any nonlinearity and ability-dependence in the rate would be absorbed
by the cost of effort, ci.

15The assumption of no knowledge accumulation is obviously unrealistic. Yet, it streamlines the analysis and
seems reasonable for a highly innovative project. The project is known to be feasible, with an uncertain completion
time. Nevertheless, Bonatti and Horner (2011) imply that my results would be robust to a small perturbation in
the project’s feasibility. This is because their Extension A to heterogenous cost agents would reduce to the present
setup if the project were almost surely feasible (p→ 1), and the cost of effort were linear. As mentioned above, the
nonlinear cost assumption (A1) ensures interior equilibrium and, in turn, a more meaningful payoff comparison,
which is the main focus here.

16Gill and Stone (2015) cite strong evidence about equal-sharing rules in team settings.
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To determine agent i’s expected discounted payoff, note that given the exponential arrival

time, the probability of no breakthrough until time t is e−αXt. In the next instant dt, agent i

incurs his flow cost ci(xi)dt and receives his reward v if the team succeeds with probability

αXdt. If the team fails, the game is reset to t = 0. As a result, agent i’s expected discounted

payoff at any point in time without the breakthrough becomes

ui =
∫ ∞

0
e−rte−αXt (αXv− ci(xi)) dt

=
αX

r+ αX
v− ci(xi)

r+ αX
, (3)

where the first term is his expected benefit and the second term is his expected cost.

3 Analysis

I begin my investigation by establishing a unique equilibrium and then show that higher-

ability agents work harder in equilibrium but need not be better off. In subsection 3.2, I con-

sider large teams with a sufficiently dispersed ability profile to make the relationship between

the ability and payoff rankings precise.

Equilibrium and payoff ordering. In (Nash) equilibrium, agent i chooses his effort that

best responds to his teammates’. Namely, given X−i = X− xi, agent i solves17

max
xi≥0

ui.

The first-order condition requires18

c′i(xi)
( r

α
+ X

)
− ci(xi) = rv. (4)

The left-hand side of (4) is a dynamic marginal cost. Re-arranging it as

c′i(xi)

α
r+ [c′i(xi)xi − ci(xi)] + c′i(xi)X−i,

notice that the first term, c′i(xi)
α r, refers to the marginal cost of increasing effort now rather

than in the next instant. The marginal cost is scaled down by the aggregate spillover factor,

17Since efforts are unobservable, agents cannot commit to their effort strategies in my model. Commitment,
however, would have no value due to exponential (or memoryless) discovery rates induced by no knowledge
accumulation; see Reinganum (1982) for a similar observation.

18The second-order condition is easily verified: ∂2ui
∂x2

i

∣∣∣ ∂ui
∂xi
=0
= −c′′i (xi)(

r
α + X) < 0.
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α, which amplifies the impact of one’s effort The second term, [c′i(xi)xi − ci(xi)], is the net

increase in the flow cost of exerting effort xi, and the last term, c′i(xi)X−i, is the marginal

opportunity cost of effort in case teammates make the breakthrough. The agent trades off the

dynamic marginal cost against the dynamic marginal benefit rv on the right-hand side of (4),

which is the time value of receiving the project prize, v.

It is worth observing from (4) that agent i’s dynamic marginal cost is increasing in his

effort, xi, (because c′′i > 0) and in the others’, X−i, implying ∂xi/∂X−i < 0. The downward-

sloping reaction function points to the classical free-riding incentive: project completion be-

ing a public good, each agent would find it costlier to put in the same effort if he knew his

teammates were working harder.

An effort profile x∗ constitutes an equilibrium if it solves (4) for all i. Proposition 1 estab-

lishes the equilibrium and some of its intuitive properties.

Proposition 1 (existence) There is a unique and interior equilibrium, i.e., x∗i > 0 for all i. Con-

versely, given a positive effort profile, x, there is a unique ability profile that engenders x as the equi-

librium. Moreover, in equilibrium,

(a) agent i’s effort always lies in a well-defined interval (xi, xi),

(b) a higher-ability agent exerts greater effort: ai > aj implies x∗i > x∗j , and

(c) every agent increases his effort with the rate of research spillover, β.

The equilibrium is interior because exerting little effort is assumed to cost little, i.e., ci(0) =

c′i(0) = 0. Its uniqueness obtains because, as argued above, agents’ efforts are strategic sub-

stitutes, i.e., ∂xi/∂X−i < 0. For the converse of the equilibrium construction, I fix an effort

profile x and simply solve (4) for the ability ai:

ai =
c′(xi)

( r
α + X

)
− c(xi)

rv
, (5)

which will be useful in Section 4 when determining the optimal team composition.

The rest of Proposition 1 lays out some key properties of the equilibrium. Part (a) offers ex-

ogenous bounds for an agent’s equilibrium effort. Roughly, the upper bound xi corresponds

to agent i’s “stand-alone” effort while the lower bound xi corresponds to his best response to

the others’ stand-alone efforts. Though loose, these bounds may be easier to check for some

9



results than the equilibrium itself. Part (b) confirms our intuition: a higher-ability agent, hav-

ing a lower marginal cost, works harder for the project. Perhaps the least obvious observation

in Proposition 1 is part (c). It says that a higher rate of research spillover, β, or, equivalently,

a higher aggregate rate α, motivates every team member regardless of their abilities. Note

from (4) that the direct effect of spillover is positive: fixing teammates’ efforts, X−i, a higher α

would reduce agent i’s dynamic marginal cost (the left-hand side of (4)), encouraging him to

work harder. Put differently, all else equal, an increase in research spillover would encourage

agent i by speeding up the discovery and bringing forward the returns. However, the indi-

rect effect of spillover is negative due to free-riding: expecting others to work harder, agent

i would also have an incentive to slack. Part (c) shows that this free-riding effect is partial

in that ∂xi/∂X−i ∈ (−1, 0). To understand, suppose, to the contrary, that ∂xi/∂X−i ≤ −1 so

that agent i’s action crowded out an increase in the others’ and (weakly) lowered the team’s

total. Then, the agent’s dynamic marginal cost would fall below the marginal benefit rv in

(4), leading him to exert more effort – not less. In a sense, it pays an agent to free ride on

others but not to the extent of stalling or slowing down the rate of discovery. In Section 5, I

will re-interpret the spillover parameter β as the level of transparency within the team, and

further show that all team members prefer more transparency.

Armed with Proposition 1, I now turn my attention to the main question of this article:

who fares better in teamwork? It is tempting to answer that a higher-ability agent would

never be worse off than his lower-ability teammates because he could easily mimic their lower

efforts. However, this answer will generally be incorrect as it ignores the commitment issue

with unobservable efforts.

Inserting (4) into (3), note that agent i’s expected equilibrium payoff reduces to

u∗i = v− c′i(x
∗
i )

α
, (6)

which is the difference between the fixed prize, v, he receives upon the project’s comple-

tion and his marginal cost, discounted by the research spillover factor, α. Hence, comparing

agents’ equilibrium payoffs amounts to comparing their equilibrium marginal costs, c′i(x
∗
i ),

in my model. To this end, recall that ci(x) =
c(x)

ai
and factor out (4) as:

c′i(x
∗
i )

[
r
α
+ X∗ − c(x∗i )

c′(x∗i )

]
= rv. (7)

Given that the right-hand side of (7) is fixed, agent i’s marginal cost c′i(x
∗
i ) and the “hazard
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rate” term c′(x∗i )
c(x∗i )

are inversely related.19 For notational brevity, let

h(x) ≡ c′(x)
c(x)

,

denote the hazard rate so that h′(x) = (ln c(x))′′. Then, (6) and (7) readily imply that agents’

equilibrium payoffs are ordered the same as their hazard rates:

sgn
(

u∗i − u∗j
)
= sgn

(
h(x∗i )− h(x∗j )

)
. (8)

Because equilibrium efforts are monotone in abilities by Proposition 1, the slope of hazard

rate function, h(x), or, equivalently, the log-concavity of the cost function, c(x), will prove

crucial for the payoff ordering. Given this, though not needed for the subsequent results, I

find the following project classification insightful.

Definition 1 (easy vs. challenging project) In equilibrium, agent i is said to view the project as
easy if h′(x∗i ) < 0

challenging if h′(x∗i ) > 0

neither if h′(x∗i ) = 0.

That is, an agent perceives the project as easy (resp. challenging) if his marginal cost in-

creases slower (resp. faster) than his cost at the equilibrium effort. As such, besides the cost

function’s shape, an agent’s perception of the project is likely to vary with the team’s compo-

sition. And team members may have heterogeneous perceptions of the project, depending on

their anticipation of teammates’ effort.20

19I borrow the term “hazard rate” for the log derivative from the procurement design literature (e.g., Laffont
and Tirole, 1993) in which the ratio F′/F, F being the cumulative density of marginal production cost, frequently
appears and is referred to as such.

20To elaborate on the project classification, consider two agents i = 1, 2 such that u∗1 = u∗2 . Then, c′1(x
∗
1) = c′2(x

∗
2)

by (6) and thus, h(x∗1) = h(x∗2) and c1(x∗1) = c2(x∗2) by (7).
Suppose agent i considers marginally increasing his effort x∗i (off-equilibrium). Clearly, by (6), his payoff would

decrease. To relate this change to his hazard rate, note that (6) can be re-written: u∗i = v− ci(x∗i )h(x
∗
i )

α . Thus, his
payoff would decrease by:

∂u∗i
∂x∗i

=
−c′i(x

∗
i )h(x

∗
i )− ci(x∗i )h

′(x∗i )
α

.

Given the above equalities, if h′(x∗1) < 0 < h′(x∗2), then
∣∣∣ ∂u∗1

∂x∗1

∣∣∣ < ∣∣∣ ∂u∗2
∂x∗2

∣∣∣: agent 1, who views the project as easy,
would lose less utility than agent 2, who views the project as challenging, by marginally increasing his equilibrium
effort.
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Before proceeding, it is worth noting that the project classification here is different from

Ozerturk and Yildirim’s (2021). Because, in their model, each agent’s reward depends on the

market’s equilibrium belief about his contribution to the project’s success, these authors call

a project “easy” if marginal cost is concave and “difficult” if sufficiently convex. For instance,

a cubic cost of effort would correspond to a difficult project in Ozerturk and Yildirim but an

easy project here. The main reason is that I assume exogenous rewards in this investigation,

in line with the extant literature.

The next result, which is immediate from (8), shows a reversal in the equilibrium payoff

order based on agents’ perceptions of the project.

Proposition 2 (payoff reversal) In equilibrium, a higher-ability agent fares worse [resp. better] than

a lower-ability if both view the project as easy [resp. challenging] in-between their efforts. Formally,

ai > aj implies
u∗i < u∗j if h′(x) < 0 or c(x) is log-concave on [x∗j , x∗i ] ⊂ (xj, xi),

u∗i > u∗j if h′(x) > 0 or c(x) is log-convex on [x∗j , x∗i ] ⊂ (xj, xi).

Proof. By Proposition 1(b), ai > aj implies x∗i > x∗j . Futhermore, xj < x∗j and x∗i < xi by

Proposition 1(a). Thus, [x∗j , x∗i ] ⊂ (xj, xi). The payoff comparison is immediate from (8) and

the fact that h′(x) = (ln c(x))′′.

The intuition behind Proposition 2 is that with unobservable efforts, the higher-ability

agent cannot commit to not overworking for an easy project to the point of being worse off.

Formally, by (6), the higher-ability agent i ends up with a higher marginal cost: c′i(x
∗
i ) >

c′j(x
∗
j ). Thus, if side payments were feasible, the two agents would be better off by marginally

shifting the workload between themselves. The payoff reversal does not occur when the two

agents perceive the project as challenging in-between their equilibrium efforts: the steep mar-

ginal cost of effort endows the higher-ability agent with some commitment not to overwork.

In fact, in this case, it is the lower-ability agent who overworks.

Proposition 2 is, however, not a full characterization: it cannot rank two equilibrium pay-

offs unless the agents’ views of the project’s difficulty match in-between their efforts; i.e., the

cost of effort is locally log-concave or log-convex. As we will see below, this feature will lead

to a surprisingly weak relationship between agents’ abilities and payoffs. Nevertheless, many

familiar cost functions that satisfy the assumption (A1) are globally log-concave. One promi-

nent example is the iso-elastic cost c(x) = xk, k ≥ 2, often used in the teamwork literature.

12



Thus, from Proposition 2, the entire team’s equilibrium payoffs are in reverse order to abilities

under a globally log-concave cost. As discussed in the introduction, this finding is consistent

with Bowen et al.’s (2019) two-agent setting.

In general, (A1) does not impose much structure on the log properties of a cost function,

but the following lemma indicates it must be log-concave for sufficiently low effort levels.

Lemma 1 c(x) is log-concave on (0, x) for some x > 0.

Proof. Because c(0) = 0 and c′′ > 0, we have c(x)
x < c′(x), or equivalently, 1

x <
c′(x)
c(x) for all

x > 0. Hence, limx→0
c′(x)
c(x) = ∞, which implies that c′(x)

c(x) must be decreasing, or equivalently,

c must be log-concave in some non-empty interval (0, x).

Lemma 1 says that irrespective of his cost function, an agent who expects to exert minimal

effort and thus bear a small cost will perceive the project as easy. And, in equilibrium, all

agents will expend minimal effort if they are sufficiently patient so that they can afford to

postpone the discovery by choosing little effort each time or if they have sufficiently low

abilities or low project value. I collect these observations in:

Corollary 1 Let a1 > a2 > ... > an. Then, u∗1 < u∗2 < ... < u∗n if

(a) (Bowen et al., 2009) the cost of effort is globally log-concave, e.g., c(x) = xk for k ≥ 2,

(b) the discount rate, r, agents’ abilities, or project value, v, are sufficiently low, or

(c) the team is a partnership of a sufficiently large size, i.e., v = V/n and n is large.

Lemma 1 also says that the cost of effort satisfying (A1) cannot be globally log-convex.21

Thus, I next consider a family of cost functions with a unique log-inflection point:
c is log-concave if x < xc

c is log-convex if x > xc

(9)

for some 0 < xc < ∞.

(9) describes a U-shaped hazard rate, h = c′
c , reaching its minimum at xc. Because, by

definition, h′(xc) = 0, an agent who chooses the critical effort xc would view the project

21Evident from the proof of Lemma 1, a globally log-convex cost would require a fixed cost of effort, i.e., c(0) >
0, under which an interior equilibrium would no longer be guaranteed for all parameter values. Extending the
model in this direction would unduly complicate the analysis without adding new insights.
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neither easy nor challenging. One example of (9) is a straightforward extension of the iso-

elastic cost:22 c(x) = xkexm
for k ≥ 2 and m > 1, where xc =

(
k

m(m−1)

)1/m
. Figure 1 illustrates

the case for k = m = 2.

Figure 1. Unique Log-Inflection: c(x) = x2ex2
and h(x) =

2
x
+2x

Before presenting Proposition 3, it is worth noting from (4) that a proportional increase in

project value v is strategically equivalent to a proportional increase in an agent’s ability be-

cause agent i cares about their product vai in choosing his effort. For ease of reference, I,

therefore, define an agent’s “value-adjusted” ability:

Ai = vai.

Proposition 3 (unique log-inflection) Let a1 > a2 > ... > an and consider the cost specification in

(9). Then,

(a) there are value-adjusted abilities 0 < AL < AH < ∞ such that
u∗1 < u∗2 < ... < u∗n if va1 < AL

u∗1 > u∗2 > ... > u∗n if van > AH.

(b) In any team, the highest equilibrium payoff belongs to its least or most able member.

22Other examples with a unique log inflection point are: c(x) = exk − 1 for k > 1, and c(x) = exArcTan(x)√
1+x2 − 1.
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(c) A payoff order arises as equilibrium for some ability profile if and only if the highest payoff

belongs to the least or most able member in any subset of the team.

Part (a) follows because, as in Corollary 1, agents with sufficiently low abilities or project

value all exert low efforts, x∗1 < xc, and view the project as easy in equilibrium. By the same

logic, team members with sufficiently high abilities or project value all put in the high effort,

x∗n > xc, and, operating on the log-convex part of the cost, view the project as challenging.

The payoff ordering is then obtained from Proposition 1.

Part (a), however, is mute when team members have more dispersed abilities or moderate

project value. Indeed, part (b) indicates that without knowing the team’s ability profile and

project value, the most one can conclude under the cost structure (9) is that the best-off member

is of the lowest or the highest ability. Part (c) refines this conclusion by showing the feasible

equilibrium payoff orders. Specifically, a payoff order with the highest payoff belonging to its

least or most able member in any subteam can emerge as equilibrium for some ability profile.

As such, for an n-agent team with heterogeneous abilities, there are 2n−1 possible strict payoff

orders in equilibrium.23 For instance, for a three-agent team, all payoff orders but those with

the medium-ability faring the best are possible in equilibrium. I numerically illustrate this

point in the next example.24

Example 1. (payoff orders) Consider a three-member team with (a1, a2, a3) = (30, 20, 10) and

r = α = 1.

Project value Payoff order
0 < v < 1.57 u∗1 < u∗2 < u∗3
1.57 < v < 2.51 u∗2 < u∗1 < u∗3
2.51 < v < 3.09 u∗2 < u∗3 < u∗1
3.09 < v u∗3 < u∗2 < u∗1

Table 1. c(x) = x2ex2

Nevertheless, part (c) does rule out n!− 2n−1 payoff orders beyond identifying the best-

off agent. For instance, there is no four-member team with a1 > a2 > a3 > a4 such that in

equilibrium, u∗4 > u∗2 > u∗1 > u∗3 or u∗4 > u∗2 > u∗3 > u∗1 . The reason is that despite being the

medium ability, agent 2 would claim the highest payoff in the subteam {1, 2, 3}, contradicting

23Two heterogeneous agents can obtain the same equilibrium payoff, which would further increase the number
of possible payoff orders.

24In the example, I vary the project value, but alternatively, one can fix the project value and, using (5), construct
an ability profile for each payoff order.
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part (c). However, the following payoff rankings are possible: u∗4 > u∗1 > u∗2 > u∗3 or u∗4 >

u∗3 > u∗2 > u∗1 .

Proposition 3 raises an obvious question: can a medium-ability member ever be the best-

off in a team? The answer is yes, but in light of Proposition 3, only if the cost of effort has at

least two log-inflections. To this end, I next posit such a family of cost functions:
c is log-concave if x < xc1

c is log-convex if xc1 < x < xc2

c is log-concave if x > xc2 ,

(10)

where 0 < xc1 < xc2 < ∞.

An example for (10) is, again, a trivial extension of the iso-elastic cost:25

c(x) = xk + xm for k ≥ 2 and
√

m > 1+
√

k.

Figure 2. Two Log-Inflections: c(x) = x2+x8 and h(x) =
2+ 8x6

x+ x7

Proposition 4 (two log-inflections) Let a1 > a2 > ... > an and consider the cost specification

in (10). Then, there exist teams in which the highest equilibrium payoff belongs to a medium-ability

25It is readily verified that xci =

(
(m−k)(m−k−1)−2k±(m−k)

√
(m−k−1)2−4k

2m

) 1
m−k

. The reader will recall that the sum

of two log-concave functions, here xk and xm, need not be log-concave.
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agent, i.e. i 6= 1, n. Moreover, there exist value-adjusted abilities 0 < AL < AM1 , AM2 < AH < ∞

such that 
u∗1 < u∗2 < ... < u∗n if va1 < AL,

u∗1 > u∗2 > ... > u∗n if AM1 ≤ vai ≤ AM2 for all i,

u∗1 < u∗2 < ... < u∗n if van > AH.

A team in which a medium-ability agent receives the highest equilibrium payoff is easily

constructed by an effort profile around the second log-inflection point, xc2 . Consider, for

instance, a three-member team with the effort profile: x1 = 2xc2 , x2 = xc2 , and x3 = xc1 . From

(5), this effort profile is the unique equilibrium for some ability profile a1 > a2 > a3. Because

the hazard rate, h(x), reaches its maximum at xc2 for x ≥ xc1 , agent 2 would obtain the highest

payoff in this team.

The second part of Proposition 4 indicates two equilibrium payoff reversals with two log-

inflections: unlike in Proposition 3, agents’ payoffs are also in reverse order to their abilities

when they are of sufficiently high ability. Again, this is because unlike (9), the cost under

(10) is log-concave for high enough effort levels. Interestingly, both very low and very high

ability agents view the project as easy: the former expect to exert relatively low effort, whereas

the latter expect to incur a relatively low cost. With two log-inflections, it is also possible

that two agents who view the project as easy may have no payoff reversal if, as indicated

in Proposition 2, the cost function is not log-concave between their efforts.26 The following

example demonstrates the additional richness of payoff orders with two log-inflections.

Example 1. (cont’d) Consider a three-member team with (a1, a2, a3) = (30, 20, 10), and r =

26For instance, inspecting Figure 2, a two-member team with equilibrium effort levels x∗1 = 1.5 and x∗2 = 0.5 for
some abilities a1 > a2 would have u∗1 > u∗2 since, clearly, h(x∗1) > h(x∗2). No payoff reversal occurs even though
both agents view the project easy: h′(x∗1) < 0 and h′(x∗2) < 0. The reason for no payoff reversal is that h′(x) ≮ 0
for some x ∈ [x∗2 , x∗1 ], so Proposition 2 does not apply.
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α = 1.

Project value Payoff order
0 < v < 0.17 u∗1 < u∗2 < u∗3
0.17 < v < 0.31 u∗2 < u∗1 < u∗3
0.31 < v < 0.37 u∗2 < u∗3 < u∗1
0.37 < v < 5.83 u∗3 < u∗2 < u∗1
5.83 < v < 8.81 u∗3 < u∗1 < u∗2
8.81 < v < 10.90 u∗1 < u∗3 < u∗2
10.90 < v u∗1 < u∗2 < u∗3

Table 2. c(x) = x2 + x8

Large teams. It is evident from the analysis so far that agents’ equilibrium payoff order

closely tracks log-concavity of the cost function. I now demonstrate that this relationship

becomes exact in a large team approximated by a continuum of agents.27 Consider such a

team and index each agent by his effort x ∈ [xL, xH ], where 0 < xL < xH < ∞ are fixed

bounds. Then, the team’s total effort is:

X =
∫ xH

xL

xdx =
x2

H − x2
L

2
.

By (5), this effort profile is the unique equilibrium for a team with the ability profile:

a(x) =
c′(x)

( r
α + X

)
− c(x)

rv
,

where a′(x) > 0 because c′′′ ≥ 0, i.e., a higher-ability agent exerts greater effort, as before.

Suppose such a dense ability profile, a(x) ∈ [a(xL), a(xH)], exists in the population. Using

(6) and (7), agent x’s equilibrium payoff is found to be

u(x) = v−
r
α v

r
α + X− 1

h(x)

, (11)

which implies

sgn[u′(x)] = sgn[h′(x)]. (12)

In words, in a large team with a sufficiently heterogeneous ability profile, i.e., a team member

with ability a(x) exists for every effort level x, equilibrium payoffs are reverse ordered with

27Strictly speaking, being measure zero, no agent would exert effort in a continuum team. The continuum team,
however, is the limit of a large but finite team. To see this, simply take two agents with effort levels x and x+ ε,
and note that u(x+ ε)− u(x) ≈ u′(x)ε in a sufficiently large team with ε ≈ 0.
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ability if the cost of effort is log-concave, and positively ordered if the cost is log-convex. As

such, local minima and local maxima for payoffs are attained at exactly log-inflection points

of the cost function. Figure 3 illustrates this relationship with the cost specification in Figure

2.

Figure 3. Payoff Non-monotonicity

c(x) = x2+x8, v = r = α = 1, xL= 0, and xH= 3

4 Second-best teams

Up to now, my analysis has demonstrated that despite working harder, higher-ability team

members can easily be worse off than their lower-ability counterparts in the unique equilib-

rium with standard (increasing and convex) cost functions. Accordingly, agents who worry

about such inequitable workload will be reluctant to participate in teamwork.

This observation begs the following question: can teams be designed to have both alloca-

tively efficient and equitable workloads? The answer is yes if the designer, e.g., an employer

or a teacher, has access to a sufficiently rich pool of agents, and the cost function has at least

one log-inflection.

Note that unable to observe efforts, the designer cannot dictate a workload allocation as

would be in a first-best world. But if they are available in the pool, she can match agents i and

j into a second-best team where their equilibrium efforts are allocatively efficient: c′i(x
∗
i ) =

c′j(x
∗
j ). Interestingly, such efficiency also ensures equal payoffs by (6) and, in turn, equal

costs, ci(x∗i ) = cj(x∗j ), by (3). Consequently, the agents in a second-best team must have equal
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hazard rates – a condition that turns out to be sufficient, too, as formalized in Lemma 2.

Lemma 2 A set, S, of agents forms a second-best team if and only if they have the same equilibrium

hazard rate, i.e., h(x∗i ) = h0 for all i ∈ S and some h0 > 0.

Proof. The necessity is immediate from the preceding argument. The sufficiency follows

from (11): two agents with equal hazard rates in equilibrium must receive the same payoff

and, in turn, have the same marginal cost by (6).

Lemma 2 tells us exactly how to compose second-best teams, which I summarize in the

following steps.

• Fix h0 > 0 and solve h(xi) = h0 for xi.

• Pick a subset, S, of these solutions and find their sum: XS = ∑i∈S xi.

• Using (5), let agent i expected to exert effort xi in S have the ability:

ai,S = c′(xi)

( r
α + XS − 1

h0

rv

)
. (13)

Notice that the second-best effort levels do not depend on the model parameters r, α,

and v, but the ability levels that engender them as the unique equilibrium do. Notice also

that the set S need not correspond to all the second-best efforts that solve h(xi) = h0. As

such, there can be multiple small second-best teams matching different effort levels with the

hazard rate h0. If it contains all the effort levels at h0, I will call that team full-size. Proposition

5 reports some general properties of second-best teams, followed by a numerical example of

team design.

Proposition 5 (second-best teams) An equilibrium effort profile is allocatively efficient if and only

if all team members obtain the same payoff. In addition,

(a) if the cost of effort has I ∈ {0, 1, 2, ...} log-inflections, then a second-best team can have at most

I + 1 heterogeneous members, and the members of a full-size team cannot uniformly view the

project as easy or challenging.

(b) In a second-best team, the members’ ability levels and their ability gaps decrease with the rate of

research spillover, discount rate, and project value. Formally, both ai,S and |ai,S − aj,S| decrease

with α, r, and v.
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(c) If a new agent k is added to a second-best team S, then the ability levels and the ability gaps in S

must increase for the expanded team to remain second best. Formally,

ai,S < ai,S∪{k} and |ai,S − aj,S| < |ai,S∪{k} − aj,S∪{k}| for i, j ∈ S.

Thus, a carefully designed team with standard preferences can be both efficient and equi-

table. The equal treatment of heterogeneous team members in my model nicely complements

Winter (2004) and Bose et al. (2010). These authors find that the least costly way of motivat-

ing ex ante homogenous team members with complementary efforts is to offer them hetero-

geneous payoffs for success. This is done to solve the coordination problem in the team. In

my setup, efforts are substitutes, and ex ante heterogeneous agents are treated equally in an

optimal team.

Part (a) of Proposition 5 is a direct implication of Lemma 2. Because two agents on a

second-best team must have the same hazard rate in equilibrium, i.e., h(x∗i ) = h(x∗j ), there

must be at least one log-inflection between their efforts (because h′(x) = 0 for some x ∈
(x∗i , x∗j ) by the mean-value theorem). Thus, the number of heterogeneous agents in a second-

best team is bounded by the number of log-inflections. The role of log-inflections in the team

design further implies that all members of a full-size team cannot view the project as easy or

challenging. If, for instance, they all regarded the project as easy, the highest ability member

would be working disproportionately hard to the point of being the worst off. Indeed, the

designer cannot compose a heterogeneous second-best team under the iso-elastic cost c(x) =

xk, k ≥ 2, which is globally log-concave and thus has no log-inflection point.

Parts (b) follows from (13). Evidently, the ability level of an agent who is expected to

exert the second-best effort xi decreases with the rate of research spillover, α, discount rate,

r, (or the discovery’s “urgency”), and the project value, v. The reason is that an increase in

each parameter would motivate the agent, reducing the need for him to be high ability to

achieve the effort xi. Perhaps more interestingly, the ability gap in the second-best team also

decreases with these parameters. Although more diverse agents, being cognizant of their cost

differences, are less prone to free-riding, this incentive is less pronounced when agents are

motivated. The intuition behind part (c) is similar: raising the team’s total effort (XS in (13)),

a new member would exacerbate the free-riding incentive among the original members. To

counter, the designer would replace them with more able and more diverse agents for the

expanded team to stay second best. I illustrate the construction of second-best teams next.

Example 2. (team design) Suppose c(x) = x2ex2
, with hazard rate h(x) = 2

x + 2x. Refer to
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Figure 4. For h0 = 6 and 5, the agents SA = {A1, A2} and SB = {B1, B2} form second-best teams,

with respective effort pairs: (0.38, 2.62) and (.5, 2). For r = α = v = 1, (13) implies the following

ability profiles in these teams: (3.85, 151267) for SA, and (5.30, 3603.48) for SB. Furthermore, (3)

implies that each agent would receive the payoff uA = 0.74 in SA, and uB = 0.70 in SB. Finally, it

is immediate from Figure 4 that both teams are full size, and that whereas agents A1 and B1 view the

project easy, i.e., h′ < 0, their teammates view it challenging, i.e., h′ > 0.

Figure 4. Second-Best Teams

5 Transparency and research spillover

In the base model, perhaps because of the project’s highly innovative nature, agents are as-

sumed not to accumulate knowledge, but they may learn from each other. Following the

literature on research joint ventures (e.g., Kamien et al. 1992), I have captured the rate of such

research spillover in (2) by the parameter β ∈ [0, 1]. As discussed in the model setup, this

parameter can be interpreted as the level of transparency within the team: with probability β,

agent i may get inspired by teammates’ attempts at discovery. The amount of transparency is

likely to depend on the close working environment that the team or its organization chooses

at the outset. In Proposition 1, I have shown that transparency motivates all team members

despite the free-rider problem, i.e., ∂x∗i
∂β > 0 for all i. In Proposition 6, I explore how trans-

parency affects their payoffs and marginal incentives.
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Proposition 6 (preference for transparency) In equilibrium, every agent prefers more transparency:
∂u∗i
∂β > 0 for all i. Moreover, sgn

(
∂x∗i
∂β −

∂x∗j
∂β

)
= sgn

(
h(x∗j )− h(x∗i )

)
, where h = c′′

c′ is the “hazard

rate” of marginal cost so that h
′
= (ln c′)′′.

Recall from part (c) of Proposition 1 that increased transparency encourages agents to ex-

ert more effort by speeding up the discovery and bringing forward the returns. Although

the free-riding incentive partially mitigates such encouragement, the overall effect of trans-

parency on individual effort is positive. In other words, transparency creates endogenous

complementarity in agents’ efforts. Proposition 6 reveals that such complementarity out-

weighs the additional cost of effort, leading each agent to opt for more transparency, regard-

less of their abilities. One implication of this result is that if they could costlessly choose it

at the outset, agents would agree on the full transparency, β = 1; in turn, by (2), each agent

would be equally likely to make the breakthrough, i.e., y∗i = nX∗ for all i, regardless of his

ability.

Proposition 6 further reveals that which agent is marginally more motivated by trans-

parency depends on the log-concavity of marginal cost. In particular, regardless of the rest

of the team, the higher ability of two agents is motivated more [resp. less] if the marginal

cost is log-concave [resp. log-convex] in-between their equilibrium efforts. It can be verified

that marginal cost has as many log-inflections as the cost itself.28 Thus, team members’ re-

sponsiveness to transparency can be as heterogeneous as their payoff orders. For instance,

marginal cost is globally log-concave for the iso-elastic cost, which means higher-ability team

members would be more responsive to transparency than the lower-ability under this cost

specification. On the other hand, if marginal cost, and thus the cost itself, has a unique log-

inflection, then the most we can say for an arbitrary team is that the most responsive team

member is of the lowest or the highest ability.

As discussed in the introduction, some recent studies, including Bose et al. (2010), Winter

(2010), and Bag and Pepito (2012), have found that peer (or effort) transparency is valuable

to an organization only if agents’ efforts are complementary. With substitutes, transparency

worsens free-riding and is undesirable. Although efforts are also substitutes in my model,

transparency is preferred by all agents, as explained above.

28This follows from the fact that
(

c′
c

)′
=
(

c′′
c′ −

c′
c

)
c′
c , which implies sgn(h′(x)) = sgn

(
h(x)− h(x)

)
. Hence,

hazard rates of cost and marginal cost have as many crossings as the log inflection points of the cost, i.e., the
points at which h′(x) = 0.

23



6 Discussion and concluding remarks

Motivated by the evidence of significant dissatisfaction with teamwork in the workplace and

classroom, this article has explored the relationship between the ability and relative well-

being of team members. The relationship is surprisingly weak: the free-rider problem can be

so severe that higher-ability agents fare worse than their lower-ability teammates (Proposi-

tions 2-4). I have shown that the extent of free-riding depends crucially on the team’s ability

profile and the log-concavity of the effort cost, which the (standard) convexity assumption

imposes little structure. On the other hand, I have also shown that carefully matching agents

into teams can ensure an efficient and equitable workload allocation, provided the team has

the “right” size and ability diversity (Proposition 5). Consequently, I view a misalignment in

either dimension as a major source of distaste for collaboration among employees and stu-

dents alike.

Indeed, based on recent teamwork statistics, human resource professionals conclude that

“[T]he most successful workplace teams ideally consist of between 4 and 9 members. Em-

ployers have a tendency of adding more members to an existing team to accelerate the work

process. And when this backfires, which it often does, they are not only faced with reduced

employee morale but also failure.”29 Similarly, in his review of teamwork efficacy in educa-

tion, Thom (2020, p. 263) writes: “ Group structure, including the number of individuals

in each group and how they are selected, is perhaps the most crucial factor in performance.

With regard to size, studies show that smaller groups – generally four or fewer members –

are more effective than larger groups... Among other problems, larger groups tend to expe-

rience higher levels of free-riding, interpersonal conflict, and general dissatisfaction.” These

best practices in business and education resonate well with the message of Proposition 5. For

instance, adding a new member to a carefully selected team will require re-grouping abilities

for the entire team. Otherwise, per Propositions 2-4, some members are very likely to view

the new workload allocation as inequitable, a potential source of “reduced employee morale”

and “general dissatisfaction.”

The teamwork statistics furthermore reveal the importance of effective communication

among team members. They point to “a staggering 85% of employees saying they feel happier

at work because they have access to collaborative management tools.” Therefore, it is not sur-

29Refer to https://teamstage.io/teamwork-statistics and https://www.zippia.com/advice/workplace-
collaboration-statistics.

24



prising that “[T]he collaboration tools and software market value has increased by more than

$5 billion between 2015 and 2019,” a 43.5 percent growth even in this pre-pandemic period.

These figures support my findings on the positive role of research spillover and the desirabil-

ity of transparency by all team members despite the free-riding issue. I conjecture one reason

why employees prefer collaborative tools is that they can better see their co-workers’ progress,

which may inspire their own. Interestingly, according to Proposition 5, a disagreement on the

project’s difficulty need not mean ineffective communication among team members. It may

be natural even in well-functioning teams.

While providing new insights into the extent of free-riding in heterogeneous teams, this

article has only scratched the surface. Future research may fruitfully adopt the model and

study team incentives for skill acquisition and transfer. Specifically, if agents could invest

in their own and teammates’ abilities before working on the project, how would they spend

their resources, e.g., time? Future research may also study optimal project design: should

group assignments be given in piecemeal or as a whole, where the reward v is spread across

pieces?

My analysis of heterogeneous teams may, however, have implications beyond teamwork.

For instance, Doraszelski (2008) examines a patent race a la Lee and Wilde (1980) between

two homogenous firms where ex-post imitation is feasible. He observes that although perfect

patent protection would lead to overinvestment by engendering a winner-take-all competi-

tion, no patent protection would lead to underinvestment by turning the race into teamwork,

as in my base model. Therefore, he concludes that “the misallocation of resources in the non-

cooperative game can be reduced by reducing the asymmetry in the rewards to winning and

losing the R&D race. One way to accomplish this is to partially insure the participating firms

against losing the R&D race, e.g., by making patent protection less than perfect. Another

way is to “throw money” at all participating firms.” My results reveal that when firms are

heterogeneous in their R&D abilities, the shape of the cost function will also play a key role

in the recommended policies. For example, if, as in Doraszelski’s model, the cost function

is iso-elastic and thus globally log-concave, the more efficient firm will likely require a more

generous compensation than the less efficient. And the reverse is likely to hold if the cost is

log-convex on the region of equilibrium investments.
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Appendix A: omitted proofs

Proof of Proposition 1. As I demonstrate in Appendix B how my results extend to

heterogeneous rewards, I offer a more general proof of equilibrium uniqueness here. To this

end, let vi > 0 be agent i’s exogenous reward from the team’s success.

Define

Φ(x, X) = c′(x)
( r

α
+ X

)
− c(x) (A-1)

so that the first-order condition (4) reads

Φ(xi, X) = rviai. (A-2)

Φ has the following properties:

Φ(0, X) = 0

(because c′(0) = c(0) = 0),

Φ(∞, X) = ∞

(because c′′ > 0, c′(∞) = ∞, and Φ(x, X) ≥ c′(x) r
α ), and

ΦX = c′(x) > 0 and Φx = c′′(x)
( r

α
+ X

)
− c′(x) > 0 for x > 0

(because c′′(x) > 0, and c′′(x)x− c′(x) ≥ 0 by c′′′(x) ≥ 0).

Then, by the properties of Φ, (A-2) has a unique solution:

xi = fi(X). (A-3)

Summing both sides of (A-3) for all i, the equilibrium X∗ must solve the following equation:

g(X) ≡∑
i

fi(X)− X = 0. (A-4)

Note that

f ′i (X) = −
ΦX

Φx
< 0 and lim

X→∞
fi(X) = 0, (A-5)

where the limit follows because the left-hand side of (A-2) would diverge if limX→∞ fi(X) > 0.

Hence,

g′(X) < 0 and lim
X→∞

g(X) = −∞. (A-6)

The equilibrium is established if g(X) > 0 for some X ≥ 0. To this end, I consider two cases:
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Case 1. c′( r
α )

r
α − c( r

α ) > r maxi{viai}.

Then, fi(0) > 0 for all i by (A-2), and, in turn, g(0) = ∑i fi(0) > 0.

Case 2. c′( r
α )

r
α − c( r

α ) ≤ r maxi{viai}.

Let imax = arg maxi{viai}. Note that (c′(x)x− c(x))′ = c′′(x)x > 0 for x > 0. Thus, there

is some X̂ ≥ 0 such that

c′(
r
α
+ X̂)

( r
α
+ X̂

)
− c(

r
α
+ X̂) = rvimax aimax ,

which implies fimax(X̂) =
r
α + X̂.

Next, consider i 6= imax. Then, there is some x̂i = fi(X̂) > 0 such that

c′(x̂i)
( r

α
+ X̂

)
− c(x̂i) = rviai.

From here, it follows that

g(X̂) = ∑
i

fi(X̂)− X̂

=
( r

α
+ X̂

)
+∑

i 6=1
fi(X̂)− X̂

=
r
α
+∑

i 6=1
fi(X̂)

> 0.

Given (A-6) and the two cases, there is a unique X∗ > 0 that solves (A-4). Therefore, from

(A-3) and the fact that f ′i < 0, there is a unique and interior equilibrium: x∗i = fi(X∗) > 0 for

all i.

Conversely, let x1 ≥ x2 ≥ ... ≥ xn ≥ 0 be an arbitrary effort profile. By (A-2), define

viai =
Φ(xi ,X)

r > 0. Clearly, viai ≥ vjaj for xi ≥ xj (with a strict inequality for xi 6= xj) because

Φx > 0. From here, it also follows that x∗i > x∗j for viai > vjaj. In Proposition 1(b), vi = v for

all i, so its statement highlights only the heterogeneity in ability.

For part (a), define

Φ(xi, xi) = rvai and Φ(xi, xi +∑
j 6=i

xj) = rvai.

Given the properties of Φ above, xi and xi uniquely exist, and 0 < xi < xi. Next, observe that

Φ(x∗i , x∗i ) < Φ(x∗i , X∗) = rvai = Φ(xi, xi) =⇒ x∗i < xi.
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Moreover,

Φ(xi, xi +∑
j 6=i

xj) = rvai = Φ(x∗i , X∗) < Φ(x∗i , x∗i +∑
j 6=i

xj) =⇒ xi < x∗i .

Hence, xi < x∗i < xi, as claimed.

I relegate the proof of part (c) to that of Proposition 6 below, as it relates to the parameter

β.

Proof of Corollary 1. Given globally log-concave cost, part (a) is immediate from Propo-

sition 2. For part (b), recall ci(x) =
c(x)

ai
and re-arrange (4):

c′(x∗i )
( r

α
+ X∗

)
− c(x∗i ) = rvai.

Suppose r → 0 but x∗i 9 0. Then, the left-hand side remains strictly positive as c′(x∗i )x
∗
i −

c(x∗i ) > 0 by c′′(x) > 0, whereas the right-hand side approaches zero, a contradiction. Hence,

x∗i → 0 as r → 0. The same limit argument also applies for v → 0 or ai → 0. Thus, by

continuity, x∗i is sufficiently small for a sufficiently low r, ai, or v. The result then follows from

Lemma 1 and Proposition 2. Finally, for part (c), recall that agents equally share a fixed total

prize in a partnership: v = V/n. Thus, v is sufficiently small for a sufficiently large n. The

result then obtains from part (b).

Proof of Proposition 3. Let a1 > a2 > ... > an and consider the cost specification in (9).

From (A-2), in equilibrium, Φ(x∗i , X∗) = rvai. Let AL ≡ Φ(xc,xc)
r > 0.

Suppose va1 ≤ AL but, to the contrary, x∗1 > xc at some equilibrium. Using (A-1), note

that

d
dxi

Φ(xi, xi + X−i) = c′′(xi)
( r

α
+ xi + X−i

)
> 0,

(A-7)
d

dX−i
Φ(xi, xi + X−i) = c′(xi) ≥ 0.

Thus,

rva1 = Φ(x∗1 , X∗) > Φ(xc, xc + X∗−1) ≥ Φ(xc, xc) = rAL, (A-8)

which implies va1 > AL, a contradiction.

Hence, va1 ≤ AL implies x∗1 ≤ xc at any equilibrium. By Proposition 1, this means x∗n <

... < x∗1 ≤ xc and, by Proposition 2, u∗1 < u∗2 < ... < u∗n.

Next, I define agent i’s stand-alone effort xs
i > 0, which uniquely solves

Φ(xs
i , xs

i ) = rvai. (A-9)
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Clearly, x∗i < xs
i in any equilibrium with n > 1 because ∂xi

∂X−i
< 0 by (A-5). Now I define

AH =
Φ(xc, xc +∑i 6=n xs

i )

r
.

Suppose van ≥ AH but, to the contrary, x∗n ≤ xc at some equilibrium. Then,

rvan = Φ(x∗n, X∗) ≤ Φ(xc, xc + X∗−n) < Φ(xc, xc + ∑
i 6=n

xs
i ) = rAH, (A-10)

a contradiction. Hence, van ≥ AH implies x∗n > xc; in turn, x∗1 > ... > x∗n ≥ xc and u∗1 > u∗2 >

... > u∗n at any equilibrium.

For part (b), the conclusion is automatic for n = 2. Let n ≥ 3, and recall that h = c′
c .

Suppose, to the contrary, that some agent i 6= 1, n has the highest equilibrium payoff in

the team. That is, u∗i ≥ max{u∗1 , u∗n}, which, by Proposition 1, is equivalent to: h(x∗i ) ≥
max{h(x∗1), h(x∗n)}. But, by (9) and the fact that x∗n < x∗i < x∗1 , either h(x∗i ) < h(x∗n) if x∗i ≤ xc,

or h(x∗i ) < h(x∗1) if x∗i ≥ xc, yielding a contradiction. Hence, u∗i < max{u∗1 , u∗n} for all i 6= 1, n.

For part (c), I first prove the following claim:

Claim. if u∗(1) ≥ ... ≥ u∗(i) ≥ ... ≥ u∗(n) is an equilibrium payoff order, then the following

effort monotonicity conditions must hold: (1) x∗(i) ≤ x∗(i+1) implies x∗(i) ≤ x∗(j) for all j ≥ i, and

(2) x∗(i) ≥ x∗(i+1) implies x∗(i) ≥ x∗(j) for all j ≥ i.

Proof. Suppose x∗(i) ≤ x∗(i+1) for some i. Then, because u∗(i) ≥ u∗(i+1), it must be that

x∗(i) ≤ xc (otherwise, xc < x∗(i) would imply xc < x∗(i) ≤ x∗(i+1) and, in turn, h(x∗(i)) < h(x∗(i+1))

by (9), revealing u∗(i) < u∗(i+1)). Suppose, to the contrary, that x(i) > x(j) for some j > i. Then,

together, xc ≥ x∗(i) > x∗(j), which implies h(x∗(i)) < h(x∗(j)) and u∗(i) < u∗(i+1), a contradiction.

Hence, x∗(i) ≤ x∗(j) for all j ≥ i, as claimed. Similarly, suppose x∗(i) ≥ x∗(i+1) but, to the contrary,

x∗(i) < x∗(j) for some i and j. Then, xc ≤ x∗(i) < x∗(j) and, in turn, h(x∗(i)) < h(x∗(j)) and u∗(i) <

u∗(i+1), a contradiction. Hence, x∗(i) ≥ x∗(j) for all j ≥ i. �
(=⇒) Suppose that u∗(1) ≥ ... ≥ u∗(i) ≥ ... ≥ u∗(n) is an equilibrium payoff order for

some ability profile, but u∗(i) does not belong to the least or most able member of the sub-

team {(i), ...(n)} for some i. Equivalently said, the effort x∗(i) is neither the highest nor the

lowest in the subteam. But this would contradict the claim because x∗(i) must be one of the

extreme efforts.

(⇐=) Suppose u∗(i) belongs to the least or most able member of the subteam {(i), ...(n)} for

all i. Then, the two effort monotonicity conditions hold; in turn, an ability profile generates

the proposed payoff order as equilibrium.
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Proof of Proposition 4. Consider a three-agent team in which x1 = 2xc2 , x2 = xc2 ,

and x3 = xc1 . Using (5), this effort profile can be engendered as the unique equilibrium

for some ability profile: a1 > a2 > a3. By (10), h(xc2) > max{h(xc1), h(2xc2)} and thus,

u2 > max{u3, u1}.
Next, recall from (A-9) that xs

i refers to i’s stand-alone effort, and define

AL =
Φ(xc1 , xc1)

r
,

AM1 =
Φ(xc1 , xc1 +∑i 6=n xs

i )

r
and AM2 =

Φ(xc2 , xc2)

r
,

AH =
Φ(xc2 , xc2 +∑i 6=n xs

i )

r
.

As in the proof of Proposition 3, it can be shown that in any equilibrium, x∗1 ≤ xc1 if

va1 < AL, and x∗n ≥ xc2 if van > AH. Because c is log-concave for both x < xc1 and x > xc2 by

(10), we have u∗1 < u∗2 < ... < u∗n.

Next, suppose AM1 ≤ vai ≤ AM2 for all i, but, to the contrary, that x∗n ≤ xc1 in some

equilibrium. Then, using the properties of Φ from (A-7) and recalling that x∗i < xs
i , we observe

rvan = Φ(x∗n, X∗) ≤ Φ(xc1 , xc1 + X∗−n) < Φ(xc1 , xc1 + ∑
i 6=n

xs
i ) = rAM1 ,

which implies van < AM1 , a contradiction. Hence, x∗n > xc1 in any equilibrium.

Similarly, suppose, to the contrary, x∗1 ≥ xc2 . Then, because X∗−1 > 0 for n > 1,

rva1 = Φ(x∗1 , x∗1 + X∗−1) ≥ Φ(xc2 , xc2 + X∗−1) > Φ(xc2 , xc2) = rAM2 ,

which implies va1 > AM2 , a contradiction. Hence, x∗1 < xc2 .

Together with Proposition 1, this means xc1 ≤ x∗n < ... < x∗1 ≤ xc2 . Because c is log-convex

on [xc1 , xc2 ] by assumption, it follows that u∗1 > u∗2 > ... > u∗n by Proposition 2.

Proof of Proposition 5. By definition, an equilibrium effort profile is allocatively efficient

if and only if c′i(x
∗
i ) = z∗ for all i and some z∗ > 0. Then, by (6),

u∗i = v− c′i(x
∗
i )

α
= v− z∗

α
for all i.

For part (a), let S be the set of agents in the second-best team. Suppose ln c(x) has I ∈
{0, 1, 2, ...} inflection points, or equivalently, h′(x) = 0 has I distinct solutions, where h =
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c′
c . Suppose, to the contrary, that S has I + 2 heterogeneous members. Then, by definition,

c′i(x
∗
i ) = z∗ for all i ∈ S, where, without loss of generality, x∗1 > x∗2 > ... > x∗I+1 > x∗I+2. Or

equivalently, h(x∗i ) = h0 for all i ∈ S and some h0 > 0 by Lemma 2. Then, by the mean-value

theorem, there exists some xi ∈ (x∗i , x∗i+1) such that h′(xi) = 0 for all i. This implies that

h′(x) = 0 has at least I + 1 solutions, yielding a contradiction. Hence, the second-best team

has at most I + 1 heterogeneous members.

Next, suppose that S is a full-size second-best team, and to the contrary, all its members

view the project as easy, i.e., h′(x∗i ) < 0 for all i ∈ S. Consider two members such that x∗i >

x∗i+1, and suppose that there is no other member with a second-best effort in-between. Then,

h(x∗i+1+ ε) < h0 < h(x∗i − ε) for some ε ∈ (x∗i+1, x∗i ). Because h is continuous, the intermediate

value theorem implies that there is some xi ∈ (x∗i+1 + ε, x∗i − ε) such that h(xi) = h0. But this

contradicts that S has no other member between i and i+ 1. A similar argument also proves

that h′(x∗i ) > 0 for all i ∈ S or h′(x∗i ) = 0 for all i ∈ S cannot arise, either.

For part (b), I use (13) and observe

∣∣ai,S − aj,S
∣∣ = ∣∣c′(xi)− c′(xj)

∣∣ ( r
α + XS − 1

h0

rv

)
,

where xi and xj solve h(xi) = h(xj) = h0 and thus, they are independent of the parameters α,

r, and v. The comparative statics are then immediate.

Part (c) follows similarly because the new member k must have h(xk) = h0 by Lemma 2,

and because XS < XS∪{k}.

Proof of Proposition 6. From (A-3), define a new function Fi such that

fi(X) = Fi(
r
α
+ X).

Then, X∗ uniquely solves

∑
i

Fi(
r
α
+ X∗)− X∗ = 0.

Differentiating with respect to α, we obtain

∂X∗

∂α
=

∑i F′i(
∑i F′i − 1

) r
α2 .

Because x∗i = Fi(
r
α + X∗), further differentiation reveals

∂x∗i
∂α

= F′i ×
(
− r

α2 +
∂X∗

∂α

)
= F′i ×

(
− r

α2 +
∑i F′i

∑i F′i − 1
r

α2

)
.
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Simplifying terms and noticing F′i = f ′i < 0, we find

∂x∗i
∂α

=
F′i(

∑i F′i − 1
) r

α2 > 0 =⇒ ∂x∗i
∂β

> 0, (A-11)

because α = 1+ (n− 1)β. This proves part (c) of Proposition 1.

To prove Proposition 6, recall from (6) that

u∗i = v− c′i(x
∗
i )

α
= v− 1

ai

(
c′(x∗i )

α

)
.

From here,
∂

∂α

(
c′(x∗i )

α

)
=

c′′(x∗i )
∂x∗i
∂α α− c′(x∗i )

α2 .

Using (A-11),

∂

∂α

(
c′(x∗i )

α

)
=

c′′(x∗i )
(

F′i
∑i F′i−1

r
α2

)
α− c′(x∗i )

α2

=
1
α2

[
c′′(x∗i )

F′i(
∑i F′i − 1

) r
α
− c′(x∗i )

]
.

Substituting for F′i ,

∂

∂α

(
c′(x∗i )

α

)
= − 1

α2

c′′(x∗i )

−c′(x∗i )
c′′(x∗i )(

r
α+X∗)−c′(x∗i )

∑i F′i − 1
r
α
− c′(x∗i )


= − c′(x∗i )

α2
(
∑i F′i − 1

) [ c′′(x∗i )
r
α

c′′(x∗i )
( r

α + X∗
)
− c′(x∗i )

+∑
i

F′i − 1

]

= − c′(x∗i )
α2
(
∑i F′i − 1

) [− c′′(x∗i )X
∗ − c′(x∗i )

c′′(x∗i )
( r

α + X∗
)
− c′(x∗i )

+∑
i

F′i

]
< 0,

because ∑i F′i < 0, and c′′(x∗i )X
∗ − c′(x∗i ) ≥ 0 given c′′′ ≥ 0.

Hence,
∂u∗i
∂α

= − 1
ai

∂

α

(
c′(x∗i )

α

)
> 0 =⇒ ∂u∗i

∂β
> 0.

Finally, observe that

∂x∗i
∂α
−

∂x∗j
∂α

=
(

F′i − F′j
) [ r

α2
(
∑i F′i − 1

)] .
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Given that ∑i F′i − 1 < 0, this implies

sgn

(
∂x∗i
∂α
−

∂x∗j
∂α

)
= sgn

(
F′j − F′i

)
.

Note from (A-5) that

F′i = f ′i = − c′(x∗i )
c′′(x∗i )

( r
α + X∗

)
− c′(x∗i )

(A-12)

= − 1
c′′(x∗i )
c′(x∗i )

( r
α + X∗

)
− 1

.

Hence,

sgn
(

F′j − F′i
)
= sgn

(
c′′(x∗j )

c′(x∗j )
− c′′(x∗i )

c′(x∗i )

)
and, in turn, given that α = 1+ (n− 1)β,

sgn

(
∂x∗i
∂β
−

∂x∗j
∂β

)
= sgn

(
h(x∗j )− h(x∗i )

)
where h = c′′

c′ .

Appendix B: Extensions

Heterogeneous rewards. Let (ai, vi) be agent i’s ability and project-value pair. In the proof

of Proposition 1, I have shown that a unique and interior equilibrium with heterogeneous

rewards exists. In equilibrium, i’s first-order condition (4) is modified to be

c′i(x
∗
i )
( r

α
+ X∗

)
− ci(x∗i ) = rvi. (B-1)

Inserting (B-1) into (3), (6) becomes

u∗i = vi −
c′i(x

∗
i )

α
,

which is equivalent to
u∗i
vi
= 1− 1

α

c′i(x
∗
i )

vi
. (B-2)

Factoring out (B-1), we find

c′i(x
∗
i )

vi

[
r
α
+ X∗ − 1

h(x∗i )

]
= r. (B-3)
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where h = c′
c , as defined in the text.

Together, (B-2) and (B-3) reveal a slight modification of (8):

sgn

(
u∗i
vi
−

u∗j
vj

)
= sgn

(
h(x∗i )− h(x∗j )

)
. (B-4)

In light of (B-4), it is evident that all the results in the text about payoff ordering with equal

rewards v would apply to the ordering of u∗i
vi

with heterogeneous rewards. Hence, when vi

and vj are not too different, it would also imply the same ordering of u∗i .

Two-stage projects. Here, I extend the base model to two-stage projects where the team

needs to make two successive breakthroughs for completion. Perhaps, the project has two

complementary parts building on each other. I show that the equilibrium characterization

remains largely intact, but effort and payoff rankings may differ in the initial stage of the

project, especially under log-concave cost. In what follows, I present the formal results in

Lemma B1 and Proposition B1, and then provide intuition in three remarks.

Let s = 1 and s = 2 denote the project’s initial and final stage, respectively. Team members

receive the reward v > 0 if and only if both stages are complete. Because, as in the base

model, there is no knowledge accumulation, optimal strategies remain stationary within each

stage. Let x∗i,s and u∗i,s represent agent i’s equilibrium effort and expected payoff in stage s,

respectively, and X∗s = ∑i x∗i,s represent the total effort.

Lemma B1. There is a unique and interior equilibrium. In equilibrium,

(a) every agent works harder in the final stage: x∗i,1 < x∗i,2 for all i,

(b) every agent’s payoff increases at an increasing rate as the project gets closer to completion:

u∗i,1 < u∗i,2 < v and u∗i,2 − u∗i,1 < v− u∗i,2 for all i.

(c) sgn
(

u∗i,2 − u∗j,2
)
= sgn

(
h(x∗i,2)− h(x∗j,2)

)
and sgn

(
u∗i,1
u∗i,2
− u∗j,1

u∗j,2

)
= sgn

(
h(x∗i,1)− h(x∗j,1)

)
.

Proof. Working backward, note that the subgame in stage 2 is equivalent to the base

model. Thus, there is a unique and interior equilibrium by Proposition 1. And, by (4), (6), and

(8), I have the following:

c′i(x
∗
i,2)
( r

α
+ X∗2

)
− ci(x∗i,2) = rv, (B-5)

u∗i,2 = v−
c′i(x

∗
i,2)

α
, (B-6)
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and

sgn
(

u∗i,2 − u∗j,2
)
= sgn

(
h(x∗i,2)− h(x∗j,2)

)
. (B-7)

From (B-6), it is immediate that

v− u∗i,2 =
c′i(x

∗
i,2)

α
> 0. (B-8)

Next, consider stage 1. This subgame is isomorphic to stage 2 with heterogeneous

rewards, u∗i,2’s. Hence, the above arguments for heterogeneous rewards apply. In particular,

the equilibrium in stage 1 is also unique and interior, and substituting u∗i,2 for vi in (B-4), I

have the following:

c′i(x
∗
i,1)
( r

α
+ X∗1

)
− ci(x∗i,1) = ru∗i,2, (B-9)

u∗i,1 = u∗i,2 −
c′i(x

∗
i,1)

α
, (B-10)

and

sgn

(
u∗i,1
u∗i,2
−

u∗j,1
u∗j,2

)
= sgn

(
h(x∗i,1)− h(x∗j,1)

)
. (B-11)

To prove part (a), I first establish that X∗1 < X∗2 . Suppose, to the contrary, that X∗1 ≥ X∗2 .

Then, x∗i,1 ≥ x∗i,2 for some i. Now observe that

c′i(x
∗
i,2)
( r

α
+ X∗1

)
− ci(x∗i,2) ≤ c′i(x

∗
i,1)
( r

α
+ X∗1

)
− ci(x∗i,1) (because c′′′ ≥ 0) (B-12)

= ru∗i,2 (by (B-9))

< rv (because u∗i,2 < v by (B-8))

= c′i(x
∗
i,2)
( r

α
+ X∗2

)
− ci(x∗i,2) (by (B-5)),

which implies X∗1 < X∗2 , a contradiction. Hence, X∗1 < X∗2 .

Next, suppose, to the contrary, x∗i,1 ≥ x∗i,2 for some i. Then, the same sequence of inequal-

ities in (B-12) and the fact that X∗1 < X∗2 yield a contradiction. Hence, x∗i,1 < x∗i,2 for all i,

proving part (a).

To prove part (b), note that

v− u∗i,2 =
c′i(x

∗
i,2)

α
(by (B-6))

>
c′i(x

∗
i,1)

α
(by part (a))

= u∗i,2 − u∗i,1 (by (B-10))

> 0. (because c′i > 0).
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Finally, part (c) records (B-7) and (B-11).

Proposition B1. Consider the unique log-inflection cost in (9), and the cutoffs AL and AH defined in

Proposition 3.

(a) If van > AH so that all equilibrium efforts are on the log-convex part of the cost, then

ai > aj =⇒ u∗i,2 > u∗j,2 and u∗i,1 > u∗j,1.

(b) Suppose va1 < AL so that all equilibrium efforts are on the log-concave part of the cost. Then,

ai > aj implies u∗i,2 < u∗j,2. Moreover,
u∗i,1 < u∗j,1 if ai − aj >

c′(xi)−c′(xj)

αv

u∗i,1
u∗j,1
>

u∗i,2
u∗j,2

if ai − aj <
c′(xi)−c′(xj)

αv and xi > xj,

where xi and xi are the bounds for i’s equilibrium effort from Proposition 1(a).

Proof. Suppose van > AH. Then, ai > aj implies u∗i,2 > u∗j,2 by Proposition 3, and, in

turn, aiu∗i,2 > aju∗j,2. The proof of Proposition 3 would further imply x∗i,1 > xc for all i (because

u∗i,2 < v and (A-10) would continue to yield a contradiction). Hence, x∗i,2 > x∗i,1 > xc for all

i by Lemma B1, i.e., the equilibrium efforts in both stages are on the log-convex part of the

cost, i.e., h′ > 0.

Next, because aiu∗i,2 > aju∗j,2, we have x∗i,1 > x∗j,1 by (A-2). From here and the fact that

h′ > 0, part (c) of Lemma B1 implies that

u∗i,1
u∗i,2

>
u∗j,1
u∗j,2

,

which, given u∗i,2 > u∗j,2, implies u∗i,1 > u∗j,1, proving part (a).

To prove part (b), suppose va1 < AL. Then, ai > aj implies u∗i,2 < u∗j,2 by Proposition 3.

Moreover, x∗i,2 < xc for all i by the proof of Proposition 3, and x∗i,1 < x∗i,2 < xc by Lemma B1,

i.e., the equilibrium efforts in both stages are on the log-concave part of the cost, i.e., h′ < 0.

Unlike in part(a), however, we cannot rank aiu∗i,2 and aju∗j,2, which is needed to compare the

equilibrium efforts in stage 1. Using the bounds in Proposition 1(a) and (B-6), notice that if

ai − aj >
c′(xi)−c′(xj)

αv or, equivalently, ai

(
v− c′i(xi)

α

)
> aj

(
v− c′j(xj)

α

)
, then aiu∗i,2 > aju∗j,2 and,

in turn, x∗i,1 > x∗j,1 by (B-9). Lemma B1 then implies

u∗i,1
u∗i,2

<
u∗j,1
u∗j,2

,

36



and in turn, u∗i,1 < u∗j,1.

Similarly, if ai − aj <
c′(xi)−c′(xj)

αv and xi > xj, then aiu∗i,2 < aju∗j,2, and in turn, x∗i,1 < x∗j,1.

Hence,
u∗i,1
u∗i,2
>

u∗j,1
u∗j,2

by Lemma B1, which is equivalent to

u∗i,1
u∗j,1

>
u∗i,2
u∗j,2

.

Remark 1 Together with Lemma B1, part (a) of Proposition B1 says that higher-ability agents work

harder and are better off in both stages of the project. The intuition behind the final (second) stage is

similar to the base model: higher-ability agents face a less severe free-rider problem under log-convex

cost. Expecting to fare better in the final stage and having the cost advantage, higher-ability agents

also act like “higher-ability” in the first stage. Thus, they continue to work harder and fare better in

the first stage.

Remark 2 Part (b) of Proposition B1 says that as with the base model, higher-ability agents are worse

off in the project’s final stage under log-concave cost. This is because free-riding is more rampant in

this case, as explained in Proposition 2. Anticipating to work disproportionately harder in the final

stage, higher-ability agents also work harder in the initial stage if they are significantly more able or

cost-effective than the rest. Otherwise, they will be less enthusiastic in the initial stage, as indicated

in part (b). Therefore, whether or not higher-ability agents are better off than the lower-ability in the

initial stage is ambiguous. Nevertheless, part (b) reveals that higher-ability agents will be relatively

better off in the initial stage.

Remark 3 Although their model features continuous project progress as a function of the team effort,

part (a) of Proposition B1 implies Bowen et al.’s (2009) payoff result is unlikely to hold under log-

convex cost. Furthermore, part (b) reveals that even with a log-concave cost, the effort and payoff

ordering can differ across project stages if effort accumulation is imperfect.
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