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Abstract

Why do committees exist? The extant literature emphasizes that they pool dispersed in-
formation across members. In this paper, we argue that they also may serve to discourage
outside influence or capture by raising its cost. As such, committees may contain members
who are uninformed or else add no new information to the collective decision. We show
that the optimal committee is larger when outsiders have larger stakes in its decision, con-
tribute lower quality proposals, or when its members are more corruptible. We also show
that keeping committee members anonymous and accountable for their votes help deter
capture.

Keywords: Committee, capture, bribe, threat, disclosure
JEL Classification: D02, D71, D72

“A committee should consist of three men, two of whom are absent.”

– Sir Herbert Beerbohm Tree [1853-1917]

1 Introduction

Why is decision-making by committees so ubiquitous? Following Condorcet (1785), a vast lit-

erature emphasizes their ability to aggregate constituent members’ diverse knowledge.1 Since

∗We thank two anonymous reviewers, the editors of this journal, Attila Ambrus, Atsu Amegashie, Luis Corchón,
Philipp Denter, René Kirkegaard, Rachel Kranton, Silvana Krasteva, Nicolas Motz, Antonio Romero-Medina and
seminar participants at Carlos III, Duke, Guelph, Lisbon, and the 2017 Public Choice Meetings for comments. Fi-
nancial supports from the Spanish Ministry for Science and Innovation, grant #ECO2013-42710-P, and Juan de la
Cierva Fellowship (Name-Correa) as well as the dean’s research fund at Duke University (Yildirim) are greatly
appreciated. All remaining errors are ours.

1For excellent surveys, see Gerling et al. (2005) and Li and Suen (2009).
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the work of George Stigler (1971), however, it has been recognized that even if committees suc-

cessfully aggregate decentralized information,2 their decisions are reliable only to the extent

that members are free from outside influence or “capture”.3 One reason why capture may oc-

cur is that individuals and groups having large stakes in the committee’s decision are often

well-organized to direct their resources toward “vote buying”: promising committee members

personal gains such as direct payments, gifts, future employment and campaign contributions

in exchange for their favorable votes.4

In this paper, we follow Stigler’s lead and ask a basic normative question: how should

committees be designed to minimize capture? Our answer revolves around the idea that an

optimal committee should have enough members, each endowed with a decisive vote, so that

capture is prohibitively costly to outsiders. As such, the committee may contain members who

are uninformed or bring no new information to improve the collective decision.

Our baseline model features a socially minded principal (e.g., municipality, admissions of-

fice, or journal editor) who appoints a panel of experts from an ex ante homogenous pool to

evaluate the “project” of a self-interested agent (e.g., a firm, applicant, or author). Like the prin-

cipal, the experts care about the project’s social value, but they may be susceptible to outside

influence, depending on how “corruptible” they are – personally and by institutional design

governing transaction costs. To distinguish our theory from the Condorcet-type approach, we

initially assume that every expert on the panel perfectly observes the project’s social value, so

information aggregation is a nonissue and, absent any concerns about capture, the principal

would appoint only one expert in our setting; that is, she would not form a committee in the
2It is well-established in the literature that committees may fail to aggregate diverse information because of

strategic (or pivotal) voting (e.g., Austen-Smith and Banks 1996; Feddersen and Pesendorfer 1998).
3Stigler presented an influential theory (and empirical evidence) of regulatory capture, which was later refined

and expanded by Peltzman (1976) and Becker (1983) and applied to many other settings including the political
economy of trade policy (Grossman and Helpman 1994). For edifying reviews of the regulatory capture literature,
see Laffont and Tirole (1993, ch. 11) and Dal Bo (2006).

4Like other researchers, we recognize that vote buying is illegal in many societies and organizations, but the
inducements offered to committee members need not be explicit. Indeed, many real cases exist in which committee
decisions were doubted or even dismissed owing to the fear of capture. Elliott (2011) reports that, perceived of
unduly favoring the industry, the US Atomic Energy Commission was replaced by the independent Nuclear Reg-
ulatory Commission (NRC) in 1975. In sports, the international soccer federation’s (FIFA’s) decision to award the
2018 and 2022 World Cups to Russia and Qatar, respectively, were linked to bribery and vote-rigging, resulting in
the indictments of several top FIFA officials (Collett et al. 2015). Last, but not least, in the 2016 Rio Olympics, several
referees and judges were removed from the boxing competitions after “suspicious results” (Belson 2016).
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first place.5 The agent, however, is likely to influence the lone expert; anticipating that possi-

bility, the principal optimally adds more members to the committee and grants each a decisive

vote (as with a unanimity rule) despite no informational gains, until the cost of capture be-

comes too high for the agent.6 We find that the optimal committee is larger in environments

that are more prone to capture: when the agent has a larger stake, offers a lower quality project,

or when experts are more corruptible owing to, say, lower transaction costs of receiving bribes.

Building on these insights, we consider several variants of the baseline model. First, we

show that when it is a viable option, the principal could be better off by not disclosing the com-

mittee’s identity to the outside world, effectively (and costlessly) increasing its size by creating

strategic uncertainty about its membership. Indeed, anonymous committees are prevalent in

peer reviews and college student admission procedures. Perhaps what is more interesting, we

also show that when the pool of experts is not large enough, it is best for the principal to adopt

a partial disclosure policy: disclose the committee’s size but not the identities of its members.7

The intuition is that partial disclosure creates strategic uncertainty as in no disclosure, but also

allows the principal credibly to raise the cost of capture as in full disclosure.8 We therefore pre-

dict that the ability strategically to disclose the committee’s identity alleviates the principal’s

design problem and results in smaller committees than those that would be appointed under

full disclosure. We argue that the principal also can alleviate her design problem by requiring

committee members to justify their (affirmative) votes by engaging in a costly action, such as

preparing an onerous expert report. We demonstrate that such voting accountability, which

is common in advisory committees, would help deter capture by compelling the agent to pay

5We later extend the analysis to imperfectly informed experts for whom information aggregation is an issue.
6In our baseline model, a larger committee size raises the cost of capture for the agent both because it increases

the probability of a sufficiently incorruptible (or socially motivated) member and because it increases the number
of bribes to be paid. What ensures a finite committee is a small cost of participation for each member (as in Persico
2004) or a finite pool of available experts. If, unlike our model, experts were purely self-motivated, no committee
size would deter capture, as will be clear in the analysis.

7Consistent with this finding, a randomized scoring system is used in Olympic boxing competitions, whereby
only a subset of judges’ scores are tallied (Belson 2016). See also Amegashi (2006) for a similar rule in the Olympic
figure skating. Similarly, the verdicts of panels of judges in civil law regimes are announced by the court as a whole;
the votes of the individual judges are not disclosed.

8As will be seen in the analysis, without the ability to commit to size, the principal has an incentive to scale down
the committee under no disclosure. Hence, if partial disclosure is not feasible or credible, the principal may opt for
full disclosure of the committee.
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larger bribes.

Next, we consider costly information acquisition by experts as well as the agent’s poten-

tial use of threats. We show that when committee members need to gather costly information

about the project’s social value, only one becomes informed because of the well-known free-

rider problem, but unlike in Condorcet-type settings (e.g., Persico 2004), the principal optimally

includes uninformed members to raise the agent’s cost of capture. Strikingly, the adding of un-

informed members occurs despite the fact that those uninformed members are expected to ap-

prove the project with certainty, essentially delegating the decision to the informed member(s).

As for the agent’s use of threats to committee members in case of an unfavorable decision, we

find that, all else equal, members view bribes (“carrots”) and threats (“sticks”) as perfect sub-

stitutes, but the agent prefers the latter. The reason is that unlike bribes, threats need not be

fulfilled if the project is accepted, which is the agent’s primary objective. Hence, when threats

also are feasible, we predict the optimal committee to be larger or else the principal will al-

locate resources to shield committee members from outside influence, as often is given as a

major reason for jury sequestration or isolation (Alcindor 2013). Last, but not least, we extend

the analysis to committees whose members possess exogenously noisy information, as in a

standard Condorcet jury. Our main finding here is that less informed committees are easier to

influence. In particular, if each expert’s information is sufficiently noisy, no committee compo-

sition can deter bribing. When information is sufficiently precise, however, such a committee

always exists, as in our baseline model.

We should emphasize that in our investigation, we focus mainly on the optimal committee

that deters capture. It is, however, obvious that if forming such a committee is not feasible,

capture is possible, especially when members are sufficiently self-interested or when they are

sufficiently uninformed about the project.

Aside from the papers mentioned above, our paper is related to committee voting when

members have “mixed” motives: they receive utility not only from choosing the socially opti-

mal alternative, but also from gaining personal reputation (Levy 2007); being on the winning

side (Callander 2008 ); expressing his ideology (Morgan and Vardy 2012); or a disesteem cost
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for an ex post wrong decision (Midjord et al. 2017). Unlike those models, bribes are endoge-

nous in ours, and can be discouraged in equilibrium by the committee’s designer. Our pa-

per also is related to previous work on vote buying. Among them, Dal Bo (2007) examines

a complete-information model, in which the outsider costlessly can capture the committee by

offering conditional bribes such that no vote is pivotal in equilibrium. Our paper complements

his by exploring transparency and design issues under incomplete information. Employing

complete-information frameworks, Congleton (1984), Groseclose and Snyder (1996) and Dekel

et al. (2008) consider competitive vote buying. Unlike them, we focus on committee designs

that deter bribing. Finally, in terms of the role of committee size, our paper echoes Besley and

Prat’s (2006) emphasis on media pluralism in preventing capture. Media outlets are, however,

different from a committee in that they do not collectively decide on the content of news, nor

can they be kept anonymous from politicians and citizens.

The rest of the paper is organized as follows. In the next two sections, we present the

baseline model and characterize the optimal committee. In Sections 4, we consider strategic

disclosure of the committee’s identity. In Sections 5 and 6, we extend the analysis to costly

vote justification actions and then to costly information acquisition. In Section 7, we allow for

the possibility of threats by an outsider. In Section 8, we extend the analysis to imperfectly

informed experts, followed by concluding remarks in Section 9. Proofs of all formal results are

relegated to an online appendix.

2 The model

There are N + 2 risk-neutral players: one principal, one agent, and N ≥ 2 ex ante identical ex-

perts. The agent submits a project to the principal for approval, upon which he receives a fixed

payoff v > 0. The principal, however, cares about the social value of the project, denoted by

s, and believes that s is uniformly distributed on the interval [−S, S].9 To ascertain s, the prin-

cipal appoints an ad hoc committee of n experts by incurring a sufficiently small, but positive

9The uniform distribution assumption greatly simplifies the analysis, but is not essential for the results.
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social cost, ε > 0, per committee member.10 To rule out information aggregation as a motive

for appointing a committee, we initially assume that every member perfectly discovers s at no

cost, although information about s is nonverifiable and can be misrepresented (see Section 8 for

an extension to noisy information). The members decide whether or not to approve the project

by voting simultaneously either Accept or Reject, and if the number of Accept votes reaches

a threshold k preset by the principal, the project is approved. Without loss of generality, a re-

jected project yields a (normalized) gross payoff of 0 to all players, and ties are broken in favor

of rejection. The agent does not learn the individual votes (i.e., votes are secret), but he may try

to sway the outcome by offering members bribes conditional on the committee’s decision.11

Let expert i be offered bribe bi ≥ 0 conditional on the project’s acceptance,12 and s+ αibi be

his resulting payoff, where the parameter αi ≥ 0 represents expert i’s degree of “corruptibility,”

with αi = 0 and αi = ∞ referring to a purely socially minded expert, like the principal, and

a purely self-interested expert, respectively. In general, the corruptibility of an expert may be

dictated by both intrinsic factors, such as cultural background and moral stance, and extrinsic

factors, such as the organizational code of conduct that determines transaction costs for bribing.

We assume that αi is privately known by expert i, and commonly believed to be an independent

draw from a continuous cumulative distribution G(α) on some interval [α, α], with 0 ≤ α < α ≤

∞ and mean E[α] = µ < ∞. That assumption is reasonable if the committee is ad hoc and the

agent has little prior interaction with its members. In the baseline model, it also is assumed

that the agent approaches the committee uninformed of s and shares the same uniform belief

as the principal. Assuming an uninformed agent also is reasonable if, for instance, the principal

keeps the criteria by which s is determined confidential until she forms the committee, or such

criteria are too costly for the agent to discover. We relax many of the modeling assumptions

later.
10The fact that the participation cost of a member is small reflects the idea that the committee serves the larger

society.
11Whether individual votes are secret or public is of no consequence in our setting since, as we will see below,

the principal optimally chooses a rule of the unanimity, i.e., k = n, thereby removing the possibility of vote-buying
schemes based on casting a pivotal vote, as in Dal Bo (2007).

12As is standard in the literature on political influence, we assume that the agent fulfills his promise of bribes
even in a one-shot interaction: perhaps because he cares strongly about his “word-of-honor” or building reputation
across a sequence of ad hoc committees; see, e.g., Laffont and Tirole (1993, ch.11) for a discussion.
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To summarize, our committee design game runs as follows.

• The agent submits a project of unknown social value, s, to the principal.

• To evaluate the project, the principal chooses a committee (n, k).

• Member i learns s perfectly at no cost.

• The agent offers bribe bi ≥ 0 confidentially to member i.

• Privately informed of (s, αi, bi), member i votes Accept or Reject.

• The project is accepted if the number of Accept votes is at least k, in which case the agent

pays the bribes as promised.

We solve for the perfect Bayesian equilibrium of this game. For tractability and ease of

exposition, however, we restrict attention to symmetric bribes by the agent: if bi > 0 and bj > 0,

then bi = bj, which seems reasonable given that experts are ex ante symmetric. As alluded to

above, our focus in this paper is on the equilibrium with no bribing or committee capture. To

that end, the ε participation cost per expert simply means that the principal would not hesitate

to appoint one more expert to the committee if that action were to reduce equilibrium bribing;

otherwise, all else equal, the principal strictly prefers a smaller committee to economize on

participation costs.

3 Optimal committee

To motivate our investigation, we begin with a simple observation.

Lemma 1 (Benchmark) If bribing were infeasible, i.e., bi = 0 for all i, the optimal committee would

have only one member.

That is, without the fear of capture, the principal would not form a committee at all in our

model. The reason is obvious: in the absence of bribing, the preferences of the principal and
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experts are aligned perfectly, and appointing one more expert, which costs the principal ε > 0,

would add no new information about s.

The agent is, however, likely to bribe the lone expert to influence his vote. To see this,

note that being offered bribe b, the expert accepts the project whenever s+ αb > 0, deviating

from the socially optimal policy s > 0. For the agent who is uninformed about s and α, the

probability of a positive decision is:

Pr{s+ αb > 0} = Eα [Pr {s+ αb > 0|α}] = Eα

[
min{S+ αb

2S
, 1}
]

,

which is increasing in b. Since our investigation is centered on the no-bribing equilibrium, we

ignore the upper limit of 1 on the probability and write the agent’s relaxed problem:13

max
b≥0

πA =

(
S+ µb

2S

)
(v− b). (1)

Simple algebra shows that b∗ = 0 if and only if µ ≤ S
v , which is likely to be satisfied if the expert

is expected to be sufficiently incorruptible and/or the agent attaches a relatively low value to

the project’s approval. To rule out the trivial case of no incentive to bribe even a one-member

committee, we impose Assumption 1 throughout.

Assumption 1. µ > S
v .

Clearly, any attempt to capture the committee would hurt the principal because it would

cause the expert to approve some socially undesirable projects, with s ∈ [−αb∗, 0]. To deter

capture, one strategy the principal can adopt is to raise its cost to the agent by appointing

multiple experts despite no informational gain. To that end, let the principal form a committee

with n experts (out of N) and the threshold voting rule k. Note that if such a committee can

deter capture, i.e., b∗ = 0, so can a smaller and less costly committee with only k members.

Hence, in designing the committee, it is optimal for the principal to restrict attention to approval

decisions taken by unanimous consent, making every vote decisive and costly for the agent,14

13Claim A1 in the online appendix establishes that the agent has no incentive to bribe in the original problem if
and only if he has no incentive to bribe in the relaxed problem.

14Other institutional and informational reasons not modeled here of course exist for adopting a unanimity rule
(see, e.g., Yildirim 2007; Bond and Eraslan 2010; Alonso and Camara 2016; and Breitmoser and Valasek 2017).
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meaning that the agent optimally would bribe either every member (and do so symmetrically

by assumption) or none of them.15 Let φ−i > 0 be the probability that members other than i

vote to accept the project.16 Then, member i also would vote to accept the project if and only if

he would be better off than voting to reject it, namely,

φ−i × (s+ αib) + (1− φ−i)× 0 > 0,

or, equivalently,

s+ αib > 0. (2)

From (2), it is evident that if αj > αi and s + αib > 0, then s + αjb > 0. Hence, under the

unanimity rule, the committee is captured if and only if its least corruptible member is captured.

Let αmin = min1≤i≤n{αi} and µn = E[αmin|n] be that “pivotal” member (who is unknown to the

agent) and his expected degree of corruptibility, respectively. Then, modifying (1), the agent

who faces an n-member committee solves

max
b≥0

πA =

(
S+ µnb

2S

)
(v− nb),

which, letting B = nb, reduces to:

max
B≥0

πA =

(
S+ µn

n B
2S

)
(v− B). (3)

The ratio µn
n in (3) can be interpreted as the committee’s expected degree of corruptibility,

taking into account the fact that only 1/n of the total bribe goes to the pivotal member with

mean corruptibility µn. It is readily verified that µn and, thus, µn
n is strictly decreasing in n,

with µn
n → 0 as n→ ∞. In words, µn

n reflects the idea that larger committees are less corruptible

both because they raise the total cost of capture to the agent (the size effect), and because the

pivotal member (with αmin) is expected to be less corruptible (the composition effect).

15Since an unbribed committee member would accept only a socially desirable project under the unanimity rule,
bribes that target a subset of members would be a pure waste for the agent.

16As is common in committee voting problems, a trivial equilibrium exists in which all members reject the project
regardless of its social value – i.e., φ−i = 0 for all i. Aside from being uninteresting, such an equilibrium involves
weakly dominated strategies for committee members and thus is not considered herein.
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Comparing (3) with (1), it follows that B∗ = 0 if and only if:

µn
n
≤ S

v
. (4)

That is, the principal can avoid capture by choosing a committee size that satisfies (4). Let n0

be the smallest of such committees.17 By Assumption 1, n0 ≥ 2 and for convenience, that size

is assumed to be feasible:

Assumption 2. n0 ≤ N.

The following proposition formalizes our arguments up to now and derives three compar-

ative statics with respect to the optimal committee. It also underlies our subsequent analysis.

Proposition 1 The optimal committee is of size n0 ≥ 2 and decides by the unanimity rule, where n0 is

the smallest integer satisfying (4). Moreover, n0 is larger if:

(a) the relative social value of the project, S/v, is smaller,

(b) experts are stochastically more corruptible (in the sense of a first-order stochastic dominance), or

(c) experts are less heterogenous in corruptibility (in the sense of a mean-preserving contraction).

Proposition 1(a) reveals that the optimal committee is larger when the agent has a stronger

incentive to capture members, either because he has a larger stake, v, in the decision, or be-

cause his project is less likely to be socially desirable but approved nevertheless. Part (b) adds

to that insight by indicating that the optimal committee also is larger when its members, es-

pecially the pivotal member with αmin, grow stochastically more corruptible, perhaps because

the transaction costs of bribing are lower and, in turn, smaller bribes are required to sway the

outcome. Part (c) shows that the same conclusion also holds true when the pool of experts is

less heterogenous in the sense of a mean-preserving contraction, since that too would imply

that the pivotal member is more corruptible. An important corollary to part (c) is that, all else

17Recall that experts incur a negligible, but positive participation cost, leading the principal to pick the smallest
committee that deters bribery.
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equal, the optimal committee is largest if experts are known to be homogenous, i.e., αi = µ for

all i, in which case n0 =
⌈ µv

S

⌉
, with d·e being the usual ceiling operator.

We illustrate Proposition 1 by an exponential example and then discuss its scope in three

remarks before we consider strategic disclosure of the committee’s identity.

Example 1 Let G(α) = 1− e−
α
µ . Then, µn =

µ
n and, thus, n0 =

⌈√
µv
S

⌉
.

Remark 1 (Symmetric bribing) In the model, the agent is assumed to bribe members equally. Proposi-

tion B1 in the online appendix shows that such a restriction is without loss of generality if d
dα

(
G′(α)

1−G(α)

)
≥

0 – a familiar hazard-rate condition that is satisfied by many well-known distributions, including the

exponential and uniform (Bagnoli and Bergstrom 2005). Intuitively, under this condition, diminishing

returns to bribing each voter are encountered, and the probability of acceptance is maximized by treating

them equally.

Remark 2 (Commitment not to overrule decision) Another modeling assumption is that the prin-

cipal delegates the decision to the committee by pre-committing to a voting rule, k, which raises the

following question: does the principal have an ex post incentive to overrule the committee’s decision?

The answer is ‘No’. Note that since s is perfectly observed by all members, the principal would overrule

the committee’s acceptance decision only if k < n and at least one member voted Reject, which would

imply s ≤ 0 (by the same token, a rejection by the committee never would be overruled). But, anticipat-

ing that, the agent would bribe all n members regardless of k, rendering the principal’s design problem

strategically equivalent to the one considered in Proposition 1.

Remark 3 (Members’ soliciting bribes) If, unlike in the model, members simultaneously make take-

it-or-leave-it bribe offers to the special interest, capture would be harder to deter. To see that, consider an

n0-member committee and suppose that αi = α and s is realized before the offers are made. Then, in a

symmetric equilibrium, b∗i =
v
n0

so long as s+ α v
n0
≥ 0. Though the reality probably lies in between, in

this paper, we follow the extant literature (e.g., Groseclose and Snyder 1996; Dal Bo 2007; Dekel et al.

2008), and assume that the special interest makes the offers.
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4 Strategic disclosure of committees

Until now, the committee is assumed to be disclosed to the agent, perhaps owing to institutional

design or the high administrative cost of keeping members anonymous. In many real settings

though, the principal seems to have a choice between disclosing (d) and not disclosing (nd) the

committee’s identity: whereas academic journals and admission offices alike rarely reveal the

set of reviewers they have consulted to the outside world, search and nominating committees

often are announced.18 One obvious advantage of nondisclosure is that it creates strategic

uncertainty for the agent as to which experts to approach and bribe, effectively raising the cost

of capture. It therefore seems plain to conjecture that the committee should never be disclosed

to the interested party. That conjecture, however, turns out to be “partially” correct, depending

crucially on the size of the expert pool, N.

To develop some intuition, recall from Proposition 1 that the principal can deter capture

by publicly appointing a committee of size n0. Notice that the same committee also is feasible

under nondisclosure, but unlikely to be chosen in equilibrium because having induced no brib-

ing, the principal has a strong incentive to downsize the committee to only one member and

save on the small participation cost, ε. Notice also that such an incentive to downsize would in

turn motivate the agent to bribe unless the pool of experts is too large.

To see that result, suppose that under nondisclosure the agent anticipates a one-member

committee and randomly bribes m out of N experts available for appointment. Then the prob-

ability that the agent targets the “right” expert is m/N. With probability 1− m/N, the sole

member receives no bribe and renders an unbiased decision on the project. We assume that

upon the project’s acceptance, the agent pays all m members as promised regardless of their

being on the (undisclosed) committee since no expert has an incentive to claim otherwise.19

Incorporating those facts into (1), the agent solves

max
b≥0,m≥0

πnd
A =

[
m
N

(
S+ µb

2S

)
+
(

1− m
N

) 1
2

]
(v−mb),

18For instance, the International Olympics Committee (of 98 members), the Tony Awards nominating committee
(of 51 members) as well as university presidential search committees (of 15-21 members) commonly are publicized.

19By the same token, if experts actively could solicit bribes from the agent, all N would do so.
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which, setting B = mb, simplifies to:

max
B≥0

πnd
A =

[
S+ (µ/N) B

2S

]
(v− B). (5)

It is immediate that Bnd = 0 if and only if µ
N ≤

S
v , or, equivalently, N ≥ µv

S . Hence, under

nondisclosure, the principal’s picking of the smallest, one-member committee and the agent’s

offering no bribe is the unique equilibrium if and only if the pool of experts is sufficiently large.

In that case, since capture is avoided under both disclosure and nondisclosure regimes, but the

latter saves on participation costs by requiring a smaller committee (than n0 ≥ 2), the principal

strictly prefers nondisclosure. Armed with that insight, though by a more involved analysis,

the following proposition fully characterizes the principal’s disclosure decision.

Proposition 2 Define N =
⌈ µv

S

⌉
, and suppose that the principal decides whether or not to disclose the

committee to the agent. Then,

(i) if N ≥ N for some N (≤ N) (defined in the proof), the principal strictly prefers nondisclosure.

Moreover, for N ≥ N, the optimal committee has nnd = 1 while for N ∈ [N, N), the principal

mixes between the committee sizes nnd = n0 and n0 − 1, where n0 ≤ n0 is the smallest integer

satisfying:
µn
N
≤ S

v
, (6)

(ii) if n0 ≤ N < N, the principal strictly prefers disclosure, with nd = n0.

Consistent with the insight above, Proposition 2(i) says that the principal would continue

to adopt a nondisclosure policy whenever the pool of experts to which she has access to is suf-

ficiently large, N ≥ N. Interestingly, though, the principal would not always form the small-

est, one-member committee under nondisclosure, because when the pool is not large enough,

N ∈ [N, N), she fears that the agent might still have a strong residual incentive to bribe enough

potential experts in the hope of biasing the single voter who is selected. In fact, we show that

under nondisclosure, the agent would bribe all N experts.20 To counter that incentive, the prin-

20Specifically, Claim A2 in the online appendix shows that under nondisclosure, unless the committee size is
conjectured to be one, it strictly would be optimal for the agent to bribe all N experts. Otherwise, as seen in (5), a
trivial indifference exists as to the number of bribes, m, offered when the committee comprises one member.
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cipal appoints multiple experts to the committee to diminish its corruptibility, i.e., αmin – the

composition effect identified above. Note that under nondisclosure, the principal does not ben-

efit from the size effect of a larger committee as it is unobservable to the agent. Hence, under

nondisclosure, the optimal committee trades off having fewer members to save on their partic-

ipation costs against having more members to reduce corruptibility. And for N ∈ [N, N), that

trade off leads to mixing over committee sizes. That is, in an equilibrium with nondisclosure,

the agent may be left strategically uncertain about not only who but also how many experts are

on the committee, although Proposition 2(i) indicates that his uncertainty about the committee

size is likely to be limited: n0 or n0 − 1. Similar to n0, committee size n0 solves a no-bribing

condition (6) by recognizing that unless discouraged from doing so, the agent is expected to

bribe all N experts under nondisclosure, which means that only 1/N of the total bribe goes

to the pivotal member with mean corruptibility µn. The principal cannot, however, credibly

commit to n0 in equilibrium since, having engendered no bribing, she has a strict incentive to

reduce the committee’s size, explaining her mixing. Mixing exactly between committee sizes

n0 and n0 − 1 is explained by the statistical fact that the mean of the sample minimum, µn, is

strictly decreasing in n at a decreasing rate. That is, the corruptibility of a smaller commit-

tee grows disproportionately, leading the principal to add more members, given a sufficiently

small participation cost.

Proposition 2(ii) indicates that when the number of experts is moderate, the principal adopts

a disclosure policy in order to take advantage of the committee size effect, too. Put differently,

the reason why the principal discloses the committee to the agent, the interested party, is credi-

bly to raise the cost of capture by committing to not downsizing the committee behind “closed

doors”.

In order to understand the scope of Proposition 2, it is, however, worth noting that in some

applications, the principal may also have a third option: partial disclosure (pd), whereby she

reveals to the agent the committee’s size but not its members – at least not before a decision is

rendered. Indeed, the trade off behind Proposition 2 suggests that the principal can do better by

partially disclosing, because it would allow her to exploit both the size effect as in disclosure
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and the agent’s strategic uncertainty as in nondisclosure.21 Proposition 3 confirms that this

suggestion.

Proposition 3 Suppose that the principal also may partially disclose the committee: disclose its size

but not its members. Then, the principal weakly prefers partial disclosure to both full and no disclosure

policies, with a strict preference whenever N0 ≤ N < N for some N0 ≥ n0. Under partial disclosure,

the optimal committee has size npd = n0 and deters capture.

Not surprisingly, partial disclosure is strictly optimal for the principal only when she has a

strict preference between the full and no disclosure policies examined in Proposition 2, so that

either the size effect or the agent’s strategic uncertainty is not taken advantage of. Proposition

3 also indicates that the principal successfully can deter capture by simply announcing com-

mittee size n0, which is no greater than n0. That result contrasts with Proposition 2(i), where

nondisclosure produces some positive bribing in equilibrium when the principal mixes over

committee sizes n0 and n0 − 1. In practice, whether the principal can, however, adopt par-

tial disclosure depends on whether she credibly can commit to the size of a fully anonymous

committee, given her incentive to downsize. Otherwise, her only credible options may be the

all-or-nothing disclosure policies examined in Proposition 2. The next example illustrates the

two results in this section.

Example 2 Continuing with Example 1, let µ = 25 and v
S = 1, implying n0 = 5 and n0 =

⌈ 25
N

⌉
.

Full or no disclosure: For 5 ≤ N < 9, the principal discloses a committee of 5 whereas for N ≥ 9,

she maintains the committee’s anonymity. In the latter case, the principal mixes between committee sizes

2 and 3 if 9 ≤ N ≤ 12, and between committee sizes 1 and 2 if 13 ≤ N ≤ 24. Finally, for N ≥ 25, the

principal appoints only one expert.

Full, partial, or no disclosure: Partial disclosure is strictly optimal for 7 ≤ N < 25. In particular,

for N = 7, 8, partial disclosure strictly dominates full disclosure by requiring a smaller committee of 4

members, whereas for 9 ≤ N ≤ 24 it strictly dominates no disclosure by requiring committees of 3 and

2, respectively – eliminating mixing in committee size in return for no bribing in equilibrium.
21The composition effect identified under full disclosure is internal to the committee and operates regardless of

other circumstances.
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Propositions 2 and 3 seem consistent with the anecdotal evidence. As alluded to above,

academic journals rarely reveal the set of reviewers to authors, and the set typically is much

smaller than the pool of potential reviewers. In law, trial juries of six to 12 persons also are

selected from a large jury pool, but the public has a constitutional right to know their iden-

tities except when the chances of bribery, intimidation and undesirable media attention are

high. Those possibilities also explain why jurors sometimes are sequestered or isolated from

the public view until they reach a verdict. In contrast, many search and nominating commit-

tees deliberately are made public and appear much larger in size (see Footnote 18). Last, but

not least, in an attempt to free judges from outside pressure, the Olympic figure skating and

boxing competitions use a scoring rule that resembles partial disclosure: a computer randomly

and anonymously selects a subset of the judges’ marks to determine the winner (see Footnote

7).

5 Vote justification

In many applications, committee members are required to justify their votes, which may be

costly. For example, journal reviewers routinely are asked to supply a written report along

with their summary recommendations. Similarly, search committees often explain how their

members have reached consensus on a job candidate. While such vote justification may help

elicit and aggregate salient information, here we show that it also may help deter capture.

In practice, vote justification may depend on one’s vote as well as on the collective decision.

For instance, a journal reviewer typically prepares an expert report ex ante before knowing oth-

ers’ publication recommendations, whereas a search committee member may have to defend

his favorable vote ex post only upon a favorable committee vote on the candidate. Consider first

ex post vote justifications and suppose that if a socially undesirable project, s < 0, is accepted

by the committee, each member incurs a justification cost of:

J(s) = −cs,

where c ≥ 0 is a fixed marginal cost. In particular, the lower the quality of the project, the
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harder, though not impossible, it is for a committee member to defend an Accept vote. Without

loss of generality, we assume no justification cost for a socially desirable project, s > 0, or for

a Reject vote. In general, marginal cost c may depend on the member’s innate ability for (or

moral stance on) misrepresenting the project’s quality, but it may also depend on the principal’s

strict rules for preparing an expert report.22

Note that given the need to account for the vote ex post, member i who receives bribe b

accepts the project if and only if: s > 0; or s ≤ 0 and s+ αib− J(s) > 0, implying that from the

agent’s perspective, the pivotal voter continues to be the least corruptible committee member

as in the baseline analysis and an n-member committee accepts the project with probability:

S+ µn
1+c b

2S
.

Setting B = nb, the agent therefore solves

max
B≥0

πA =

(
S+ 1

1+c

( µn
n

)
B

2S

)
(v− B),

which mirrors (3) and reveals that the optimal bribe with ex post vote justification is BJ = 0

whenever (
1

1+ c

)
µn
n
≤ S

v
. (7)

Let nJ(c) be the smallest integer that satisfies (7). The following result then is immediate.

Proposition 4 The optimal committee that deters capture under ex post vote justification has size nJ(c),

which is decreasing in c. In particular, nJ(c) = 1 for c > v
S µ− 1. Furthermore, the same committee

also deters capture under ex ante vote justification.

Proposition 4 obtains because costly vote justification compels the agent to pay larger bribes

to members, raising his cost of capture. In particular, the larger the cost of defending a low qual-

ity project, the smaller is the committee size that prevents capture. In fact, for a sufficiently high

22If the committee prepares a joint report after the vote, then c = C
n may be considered to be the (decreasing)

marginal cost per member. Our conclusion in Proposition 4 would, however, not change.
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marginal cost of vote justification, the principal optimally may appoint a one-member commit-

tee and thereby ensure an unbiased decision.23 Proposition 4 further shows that it is easier for

the principal to discourage bribing if members must justify their Accept votes regardless of the

committee’s decision. The reason is that a member may now not receive a bribe from the agent

despite his affirmative vote, effectively increasing his cost of justification.

6 Endogenous information

Heretofore, we have maintained an exogenous information structure for both committee mem-

bers and the agent – i.e., members are assumed to be informed and the agent is assumed to

be uninformed of the project’s social value. In this section, we relax each assumption to un-

derstand players’ incentives to acquire costly information and how those incentives affect the

principal’s committee design.

6.1 Committee members

Suppose that unlike the baseline analysis, committee members initially are uninformed about

the project’s social value, s. Each of them can, however, become informed by paying a fixed

cost ηE > 0 before receiving a bribe.24 To avoid a trivial multiplicity of equilibria, we assume

that members make information decisions sequentially in a random order. Without observing

their decisions or the order, the agent offers bribes and members then vote simultaneously on

the project as before.

Note that with no outside influence, a lone expert would become informed as long as

ηE < S
4 .25 Note also that owing to a severe free-rider problem, a larger committee would

continue to have only one informed member, namely the last one to decide on information ac-

23Given that prediction, one may wonder why the principal would not set a very high c – perhaps by requiring
very detailed and onerous expert reports. While not part of our model, we believe that such high costs may affect
experts’ willingness to serve on committees.

24Whether a member decides to become informed before or after receiving a bribe has no qualitative effects since
we focus on the no-bribing equilibrium.

25Given that s ∼ U[−S, S], the value of information is

Pr{s > 0}E[s|s > 0] + Pr{s < 0}(0)− E[s] =
S
4

.
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quisition, leading the principal to choose a one-member committee. In particular, consistent

with Condorcet-type settings (e.g., Persico 2004), the optimal committee would involve no un-

informed members to save on their participation costs. With outside influence, however, that

is not the case, as our next result shows.

Proposition 5 Suppose that ηE <
S
4 . Then, under an endogenous information setup, the optimal com-

mittee that deters capture has size nE =
⌈ µv

S

⌉
. In equilibrium, only one member acquires information,

and the remaining – uninformed – members all cast Accept votes.

Given no bribery in equilibrium, the free-rider problem mentioned above implies that only

one member acquires information. And under the unanimity voting rule, the remaining – un-

informed – members all cast Accept votes and leave the approval of the project to the decisive

vote of the informed member, meaning that the agent ideally would bribe only the informed

member, but because he cannot identify that member, the principal raises his cost of bribing by

appointing a larger committee, which contains mostly uninformed experts. Put differently, the

principal intentionally appoints uninformed experts to ensure an unbiased informed decision

by one of them, which is consistent with the role of nondisclosure considered above. It also is

worth noting that unlike the baseline analysis with exogenously informed members, the opti-

mal committee size under endogenous information depends on the mean corruptibility, µ, of

one – informed – member as opposed to that of the least corruptible member, µn. Hence, Propo-

sition 5 predicts a larger committee to deter bribing when information acquisition is costly to

members.26 To illustrate, recall from Example 1 that n0 =
⌈√

µv
S

⌉
, which is smaller than nE.

6.2 Agent

In the baseline analysis, like the principal, the agent is uninformed about the project’s social

value, s. As mentioned before, that assumption makes sense if, for instance, the principal

keeps the evaluation criteria by which s is determined secret until she appoints the committee,

26In fact, no committee size would deter bribing if ηE >
S
4 . The reason is that with sufficiently high information

costs, all members would remain uninformed and vote to accept the project in exchange for a negligible bribe.
Anticipating such full capture, the principal would not appoint a committee.
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or such criteria are too costly for the agent to discover. Otherwise, it is conceivable that the

agent would invest in ascertaining s to better tailor his influence on the committee. To examine

that possibility, suppose that before approaching committee members, the agent can perfectly

learn s by paying a fixed cost ηA ≥ 0, and his decision to do so is unobservable to the principal.

Clearly, if s > 0, an informed agent would not bribe any committee member since the

project would be accepted regardless. If, on the other hand, s ≤ 0, an informed agent would

offer bribe b so that the pivotal member accepts the project, i.e., s+ αminb > 0 or, equivalently,

αmin > −s/b, yielding to the agent the following indirect utility:

π I,−
A (s, n) = max

b
[1− G(−s/b)]n (v− nb). (8)

Hence, since s ∼ U[−S, S], the expected utility for an informed agent is given by

π I
A(n) =

1
2

v+
1

2S

∫ 0

−S
π I,−(s, n)ds. (9)

For an uninformed agent, the decision to bribe is the same as in the baseline model. In particu-

lar, the principal can form a committee of n0 members and ensure no capture by an uninformed

agent, resulting in an expected payoff of:

πU
A =

1
2

v. (10)

Subtracting (10) from (9), the agent’s value of information therefore is

∆(n) =
1

2S

∫ 0

−S
π I,−

A (s, n)ds.

Clearly ∆(n) ≥ 0, but the agent will become informed if and only if the cost is justified, namely

∆(n) ≥ ηA. Applying the envelope theorem to (8), it readily can be checked that ∆(n) is

decreasing in n, leading us to Proposition 6.

Proposition 6 The optimal committee size is decreasing in the agent’s information cost, ηA, and is

given by:

nA =


N if ηA < ∆(N)⌈
∆−1(ηA)

⌉
if ∆(N) ≤ ηA ≤ ∆(n0)

n0 if ∆(n0) < ηA.
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Proposition 6 says that it is easier for the principal to deter committee capture when the

agent is less likely to share members’ information about the project. In particular, the princi-

pal prefers an uninformed agent. As alluded to above, an informed agent bribes committee

members just enough to secure their Accept votes and needs to do so only when his project is

socially undesirable. Hence, bribing is less costly to an informed agent and requires a larger

committee to discourage. Altogether we conclude that the principal prefers a smaller cost of

information acquisition for experts and a larger cost of information for the agent.

7 Bribes versus threats

Besides promising them bribes conditional on a favorable decision, the agent also may make

threats to committee members conditional on an unfavorable decision. Examples of threats

include retaliation in kind, personal or property injury, bad publicity and violence. Intuition

suggests that threats should provide members with incentives to vote similar to bribes and thus

not qualitatively change the baseline analysis. We confirm that intuition below, but also prove

that, all else equal, threats are harder for the principal to deter than bribes.

To formalize, suppose that in addition to bribe bi ≥ 0, the agent also threatens to impose

a cost ti ≥ 0 on member i in the baseline model. Specifically, if the project is rejected by the

committee, the member now receives a negative payoff: −βiti, where βi ≥ 0 is his privately

known “sensitivity” to threats. Threat ti is commensurate to a bribe and assumed to cost the

agent ti up to a commonly known capacity (or credibility) constraint, T:

n

∑
i=1

ti ≤ T.

To focus purely on the agent’s strategic choice between the two types of incentives, let

βi = αi so that member i views bribes and threats to be perfect substitutes. Mathematically,

given that others accept the project with probability φ−i > 0, member i would vote for the

project if

φ−i × (s+ αibi) + (1− φ−i)(−αiti) > −αiti,
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or, equivalently,

s+ αi × (bi + ti) > 0.

Assuming symmetric treatment of members by the agent as in the baseline model and letting

B = nb and T = nt, it follows that the project is accepted with probability:
S+( µn

n )(B+T)
2S . Hence,

accounting for the fact that threats are fulfilled only when the project is rejected, the agent

solves the following program, extending (3):

max
B≥0,T≤T

πt
A =

(
S+

( µn
n

)
(B+ T)

2S

)
(v− B)−

(
1−

S+
( µn

n

)
(B+ T)

2S

)
T

or, simplifying,

max
B≥0,T≤T

πt
A =

(
S+

( µn
n

)
(B+ T)

2S

)
(v+ T − B)− T. (11)

Inspecting (11), it is evident that the agent’s expected payoff πt
A is concave in B but convex

in T. Roughly speaking, although, being perfect substitutes for members, a marginal increase

in B or T has the same positive effect on the project’s acceptance, the agent need not pay T ex

post, implying that, all else equal, the agent is more likely to use threats than bribes, requiring

a larger committee to deter the former, as formalized in Proposition 7.

Proposition 7 The optimal committee that deters capture with threats, i.e., Bt = Tt = 0, has size

nt ≥ n0, where nt is the smallest integer that satisfies: µn
n ≤

S
v+T

. Moreover, nt is increasing in the

agent’s threat capacity, T.

To understand Proposition 7, note that since his expected payoff is convex in threats, the

agent adopts an all-or-nothing strategy in using them – i.e., Tt = 0 or T. In addition, since

threats need not be fulfilled after a favorable committee decision, the agent has a larger stake in

the project’s approval, v+ T. Hence, the optimal committee that deters capture with threats is

larger than that without them, and its size is increasing in the agent’s threat capacity, T. To that

end, Proposition 7 suggests that when the pool of experts is too small to dilute threats on the

committee, the principal may want to invest in raising the agent’s cost of threatening, which

effectively lowers T, by shielding the committee members from outsiders, as in the case of jury

sequestration.
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8 Noisy information

To isolate the role of committees as a deterrent to capture, we have assumed in the baseline

model that every member learns the social value of the project perfectly so that information

aggregation is a nonissue. Here, we relax that assumption by introducing an exogenous source

of noise. Let expert i receive signal si, which is uninformative with probability λ ∈ [0, 1], but

is accurate with probability 1− λ. In the former condition, si is a random draw from U[−S, S]

as before. For consistency, we continue to require unanimous agreement for project approval

and, for tractability, we assume that experts are homogenous in their corruptibility, i.e., αi = α

in this section, meaning that if experts were perfectly informed, λ = 0, a committee of size

n0 =
⌈

αv
S

⌉
would deter bribing. Next, we show that no such committee exists when experts are

sufficiently uninformed.

Note that with noisy information, member i still follows a cut off voting strategy: accept the

project if si > s∗i , and reject it otherwise. As is common in the literature on strategic voting, we

focus on symmetric equilibrium, i.e., s∗i = s∗. Upon receiving bribe b and privately observing

si, member i accepts the project if:

(1− λ)si + λ
(
(1− λn−1)E[s|si, s∗, I] + λn−1E[s|si, s∗, U]

)
+ αb > 0,

where the left-hand side is the member’s expected payoff from accepting the project in the

event of being pivotal. Specifically, with probability 1− λ, member i’s signal is correct. With

probability λ, however, it is pure noise, in which case member i relies on at least one informed

Accept vote, occurring with probability 1 − λn−1, amongst the rest of the committee. Here,

E[s|si, s∗, I] and E[s|si, s∗, U] represent the expected quality of the project conditional on equi-

librium strategies as well as on having either at least one informed member or none, respec-

tively.27 Given the uniform distribution assumption, E[s|si, s∗, I] = s∗+S
2 and E[s|si, s∗, U] = 0.

Hence, in equilibrium the following indifference equation must hold,

(1− λ)s∗ + λ(1− λn−1)
s∗ + S

2
+ αb = 0,

27Recall that all informed members observe the same signal, so E[s|si, s∗, I] is not conditioned on the number of
informed members.
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which yields the equilibrium cutoff: s∗ = − (λ−λn)S+2αb
2−λ−λn and, in turn, the equilibrium probability

of an Accept vote:

φ∗ = min
{
(1− λn)S+ αb
(2− λ− λn)S

, 1
}

. (12)

Given φ∗, the project is approved with probability:

pA(φ
∗; λ, n) = φ∗ (1− λ+ λφ∗)n + (1− φ∗) (λφ∗)n . (13)

The first term in (13) reflects the project’s acceptance conditional on its social value exceeding

s∗, which occurs with probability φ∗. Conditional on the complementary event, s < s∗, the

second term reflects acceptance, which requires all members to be uninformed. As expected,

pA(φ
∗; 0, n) = φ∗ and pA(φ

∗; 1, n) = (φ∗)n. Conjecturing (13), the agent solves the following

program:

max
b≥0

πA = pA(φ
∗; λ, n)(v− nb)

Clearly, the agent has no incentive to bribe if ∂πA/∂b|b=0 ≤ 0; otherwise, no committee can

discourage bribing.

Proposition 8 There exist 0 < λ ≤ λ < 1 such that a finite committee deters bribing for λ ≤ λ, but

no such committee exists for λ ≥ λ.

Proposition 8 follows from a continuity argument: we know from the baseline model that a

committee of finite size n0 deters bribing when experts are perfectly informed, λ = 0, whereas

no such committee can be found when experts are perfectly uninformed, λ = 1, since they are

willing to accept the project in exchange for a negligible bribe, i.e., φ∗ = 1 for b > 0. As such,

Proposition 8 reinforces Proposition 5: less informed experts are more susceptible to outside

influence, and committees that rely on such experts need to be larger to prevent capture.

9 Conclusion

Committees are a fixture of collective decision-making in modern society. Following Condorcet

(1785), much of the existing literature stresses their ability to draw upon the diverse opinions
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of their constituent members. In this paper, following the Chicago school’s capture theory

of regulation, we have offered a complementary explanation: committees may also serve to

minimize outside influence by parties having stakes in committee decisions. We have argued

that a committee that contains enough members, each granted a decisive vote (as with a una-

nimity rule), can make capture unprofitable for the stakeholders in its decision. As such, we

predict an optimal committee to be larger in environments that are more vulnerable to capture:

when outsiders have larger stakes in the decision, submit lower quality projects for approval,

or when committee members potentially are more corruptible and poorly informed on the is-

sue before them. We have shown further that keeping the committee’s identity anonymous

from the interested parties as well as requiring its members to justify their votes can help deter

capture. Nevertheless, it also follows from our results that a committee may be captured if it

cannot be optimally designed, such as when its members are sufficiently uninformed or when

they are sufficiently self-motivated. In fact, a future extension of the analyses presented herein

might examine how to design a self-motivated committee that maximizes bribes from special

interests.

In closing, we note that one could test our predictions by comparing an actual committee’s

size to that needed for accurate (unbiased) information aggregation. For instance, the optimal

committee in a purely informational setting should be relatively small if the signals about a

project’s social value received by members are highly correlated (perhaps because their infor-

mation sources and expertise are similar), or if signals are significantly costly to acquire so that

the free-riding problem is severe. One could also test our predictions by looking into committee

sizes for cross-sections of project qualities and stakes in the decision.
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Appendix A: proofs of formal results

Proof of Lemma 1. Immediately follows from the argument in the text.

Before proving Proposition 1, we introduce the agent’s “relaxed” problem for a given com-

mittee of size n and voting rule k, denoted by the pair (n, k). Let the agent bribe m members,

each in the amount b ≥ 0. Clearly, the optimal m must be either m = 0 or k ≤ m ≤ n. Suppose

that k ≤ m ≤ n. Then, from the agent’s viewpoint, the pivotal voter is the member whose α

is the kth highest among the bribed since if this voter accepts the project, so will k − 1 others

with greater α’s, ensuring the project’s approval. Statistically, the pivotal voter has α that is the

(m− k+ 1)th order statistic in a sample of size m (for k = m, the order statistic reduces to the

sample minimum). Let αk,m and µk,m = E[αk,m] denote the pivotal voter and his mean corrupt-

ibility, with the convention that µk,m = 0 for k > m and, for notational ease, let µm,m = µm as in

the text. The following fact is immediate from the properties of the order statistics.

Fact A1 For k < m, µk,m is strictly decreasing in k. Moreover, µm is strictly decreasing in m.

Proof. The first conclusion obtains directly by the definition of the order statistics and the

assumption that G(α) is nondegenerate and continuous. To see the second, note that µm is the

mean of the first-order statistic. Hence, by definition, µm =
∫ α

α
αdGmin(α), where Gmin(α) =

1− [1− G(α)]m. Integrating by parts, we have

µm = α+
∫ α

α
[1− G(α)]mdα. (A-1)

From (A-1), it follows that µm is strictly decreasing in m.

For a fixed committee (n, k), the agent’s “original” problem can be written:

max
b≥0,m≥0

π̂A = Pr{s+ αk,mb > 0}(v−mb) (OP)

= E
[

min
{

S+ αk,mb
2S

, 1
}]
(v−mb)

where the second line follows because s ∼ U[−S, S]. By Jensen’s Inequality, note that

E
[

min
{

S+ αk,mb
2S

, 1
}]
≤ min

{S+ µk,mb
2S

, 1
}
≤

S+ µk,mb
2S

.

Given this, we can write the agent’s relaxed problem:

max
b≥0,m≥0

πA =

(S+ µk,mb
2S

)
(v−mb). (RP)
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Letting B = mb and M(k, m) =
µk,m

m , the relaxed problem can be re-stated more conveniently

as:

max
B≥0,m≥0

πA =

(
S+ M(k, m)B

2S

)
(v− B).

Conditional on m, the optimal total bribe in (RP) is found to be:

BR(k, m) =


1
2

[
v− S

M(k,m)

]
if M(k, m) > S

v

0 if M(k, m) ≤ S
v .

(A-2)

Claim A1 Fix a committee (n, k). Then, the agent does not bribe in the relaxed problem if and only if

he does not bribe in the original problem.

Proof. The sufficiency part is obvious because the agent cannot be worse off under (RP)

and, without bribing, he receives the same payoff of v
2 in both (OP) and (RP). To prove the

necessity, suppose that the agent chooses not to bribe under (OP) but bribes some members

under (RP): ∂
∂b π̂A

∣∣∣
b=0
≤ 0 for all m, and from (A-2), M(k, m′) > S

v for some m′ ≥ k. In particular,

∂
∂b π̂A

∣∣∣
b=0
≤ 0 for m = m′. Note from (OP) that

π̂A =

 min{S/b,α}∫
α

S+ αb
2S

dGk,m(α) + 1− Gk,m(min{S/b, α})

 (v−m′b),

where Gk,m represents the cumulative distribution of αk,m. Simple algebra shows that

∂

∂b
π̂A =

 min{S/b,α}∫
α

α

2S
dGk,m(α)

 (v−m′b)−m′

 min{S/b,α}∫
α

S+ αb
2S

dGk,m(α) + 1− Gk,m(min{S/b, α})

 ,

and, in turn,

∂

∂b
π̂A

∣∣∣∣
b=0

=
µk,m′

2S
v−m′

S
2S

=
vm′

2S

[
M(k, m′)− S

v

]
> 0,

yielding a contradiction. Hence, the agent would also choose not to bribe under (RP).

Proof of Proposition 1. We first show that (n0, n0) is the unique optimal committee that

deters bribing. Suppose, to the contrary, that there is another committee (n′, k′) 6= (n0, n0) that

also deters bribing in equilibrium and n′ ≤ n0. Then, k′ < n0. Moreover, by (A-2), M(k′, m) ≤ S
v

for all m ≤ n′. In particular, M(k′, k′) ≤ S
v . But since n0 is the smallest integer that satisfies (4)
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and M(k, k) = µk
k is strictly decreasing in k by Fact A1, it must be that k′ ≥ n0 – a contradiction.

Hence, (n0, n0) is the unique optimal committee.

Part (a) directly follows from the definition of n0. To prove part (b), recall from above that

Gmin(α) = 1− [1− G(α)]n is the cumulative distribution of αmin. Clearly, if G1(α) ≤ G2(α)

∀α (i.e., G1 first-order stochastically dominates G2), then G1
min(α) ≤ G2

min(α) ∀α, which implies

µ1
n ≥ µ2

n and in turn µ1
n

n ≥
µ2

n
n . Using (4) and the fact that µn

n is strictly decreasing in n, the

desired conclusion is reached.

Finally, to prove part (c), let H and G be two continuous cumulative distributions on the

support [α, α]. And suppose that H is a (simple) mean-preserving spread of G (or G is a

(simple) mean-preserving contraction of H) in the sense of Diamond and Stiglitz (1974): C1:∫ α
α H(α)dα =

∫ α
α G(α)dα and C2: for a unique α̂ ∈ (α, α), H(α) > (<)G(α) when α < (>)α̂.

Given (4), it suffices to prove that the means of the sample minimums are ordered: ∆ ≡
µn(G)− µn(H) > 0 for n > 1. By definition,

∆ =
∫ α

α
αn [1− G(α)]n−1 dG(α)−

∫ α

α
αn [1− H(α)]n−1 dH(α),

which, using integration by parts and canceling terms, reduces to

∆ =
∫ α

α
[(1− G(α))n − (1− H(α))n] dα.

Recalling the algebraic factorization: an − bn = (a− b)Q(a, b), where Q(a, b) = ∑n
i=1 an−ibi−1,

we have that

∆ =
∫ α

α
[H(α)− G(α)]Q(1− G(α), 1− H(α))dα

=
∫ α̂

α
[H(α)− G(α)]Q(1− G(α), 1− H(α))dα+

∫ α

α̂
[H(α)− G(α)]Q(1− G(α), 1− H(α))dα

where α̂ is as defined in C2 above. Since Q(a, b) is strictly increasing in both arguments, we

further have that

∆ >
∫ α̂

α
[H(α)− G(α)]Q(1− G(α̂), 1− H(α̂))dα+

∫ α

α̂
[H(α)− G(α)]Q(1− G(α̂), 1− H(α̂))dα

= Q(1− G(α̂), 1− H(α̂))
∫ α

α
[H(α)− G(α)] dα.

Since
∫ α

α
[H(α)− G(α)] dα = 0 by C1, we conclude that ∆ > 0, as claimed.

To prove Propositions 2 and 3, we first define the equilibrium under nondisclosure and then

prove Claims A2-A6. To that end, let p(m, n) = (mn)

(N
n )

be the probability that if m out of N experts
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are bribed randomly, an n-member committee would lie in among them. Also, slightly abusing

the notation above, let

M(m, n) =
µn
m

.

Clearly, M(m, n) is strictly decreasing in both arguments by Fact A1.

Definition A1 Suppose that the committee’s identity is not disclosed – neither its size nor its

members. We say that the triple (nnd, mnd, bnd) is a pure strategy Nash equilibrium if:

1. (Principal) Given (mnd, bnd), nnd solves

max
n≥1

πP =

[
p(mnd, n)

∫ S

−µnbnd

s
2S

ds+
[
1− p(mnd, n)

] ∫ S

0

s
2S

ds
]
− nε (A-3)

=
S
4
− p(mnd, n)

(µnbnd)2

4S
− nε.

2. (Agent) Given nnd ≥ 1, (mnd, bnd) solves

max
m,b

πA =

[
p(m, nnd)

(
S+ µnnd b

2S

)
+ (1− p(m, nnd))

1
2

]
(v−mb) (A-4)

=

(
1
2
+

p(m, nnd)M(m, nnd)

2S
mb
)
(v−mb) .

Claim A2 Given nnd ≥ 1, it is optimal for the agent to bribe all N experts – i.e., mnd = N, with strict

optimality for nnd > 1. Moreover, bnd = 1
2N

(
v− S

M(N,nnd)

)
for M(N, nnd) > S

v .

Proof. From the first-order condition of (A-4), it is immediate that given m,

bnd =
1

2m

[
v− S

p(m, nnd)M(m, nnd)

]
whenever S

v < p(.)M(.). Next, by definition, for any m ∈
[
nnd, N

)
,

p(N, nnd)︸ ︷︷ ︸
=1

M(N, nnd) = p(m, 1)M(m, nnd).

Since p(m, 1) ≥ p(m, n), with strict inequality for n > 1, it follows that p(N, nnd)M(N, nnd) ≥
p(m, nnd)M(m, nnd), with strict inequality for nnd > 1. Moreover, by the envelope theorem,

the agent’s optimal payoff in (A-4) is increasing in p(.)M(.), which implies that given nnd, it

is optimal for the agent to bribe all experts – i.e., mnd = N, with strictly optimality whenever

nnd > 1. Hence, p(mnd, nnd)M(mnd, nnd) = M(N, nnd) and bnd reduces to the expression stated.
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Claim A3 If N ≥ N, then nnd = 1 and bnd = 0, where N =
⌈ µv

S

⌉
.

Proof. It directly follows from the arguments preceding Proposition 2 in the text.

Before stating Claim A4, recall from Proposition 2 that n0 is the smallest integer such that
µn
N ≤

S
v .

Claim A4 n0 ≤ n0, and n0 is decreasing in N, with n0 > 1 for n0 ≤ N < N, and n0 = 1 for N ≥ N.

Proof. Directly follows from the definition of n0 in Proposition 1 and the fact that µn is

strictly decreasing in n (Fact A1).

The following statistical fact is instrumental to prove Claim A5.

Fact A2 Both µn − µn+1 and µ2
n − µ2

n+1 are strictly decreasing in n.

Proof. From (A-1), we find

µn − µn+1 =
∫ α

α
[1− G(α)]nG(α)dα. (A-5)

Clearly, µn − µn+1 is strictly decreasing in n and so does µ2
n − µ2

n+1 because µ2
n − µ2

n+1 = (µn −
µn+1)(µn + µn+1).

Claim A5 Suppose the principal does not disclose the committee’s identity. Then, there exists ε > 0

such that for ε ∈ (0, ε) and n0 ≤ N < N, there is a unique equilibrium, in which the principal

mixes between committee sizes n0 − 1 and n0.

Proof. Suppose that n0 ≤ N < N. Then, n0 > 1 by Claim A4. Let the principal mix between

the committee sizes n0 − 1 and n0, placing probabilities φ ∈ (0, 1) and 1− φ, respectively. To

characterize, we extend (A-4) to accommodate for mixing:

max
m,b

πA =

(
1
2
+ φp(m, n0 − 1)

µn0−1b
2S

+ (1− φ)p(m, n0)
µn0

b
2S

)
(v−mb) .

Let mo(φ) denote the optimal number of bribes. Then, applying the same arguments as in the

proof of Claim A2, we find mo(φ) = N and therefore

bo(φ) = max{ 1
2N

[
v− S

φM(N, n0 − 1) + (1− φ)M(N, n0)

]
, 0}. (A-6)

Note that for the principal to mix between the committee sizes n0 − 1 and n0, she must be

indifferent: πP(n0 − 1) = πP(n0), which, from (A-3), implies that
(

µ2
n0−1 − µ2

n0

)
(bnd)2

4S = ε or,

equivalently,

bnd =

√
4Sε

µ2
n0−1 − µ2

n0

> 0. (A-7)
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Since, by definition, bnd = bo(φnd), we see from (A-6) that, for a sufficiently small ε > 0, there

is a unique probability φnd ∈ (0, 1) that supports the principal’s mixing between n0 − 1 and

n0. To show that such mixing by the agent is indeed an equilibrium, we next argue that the

principal has no incentive to deviate given that mnd = N and the agent pays bnd to each expert

(recall that, under nondisclosure, the principal and the agent play a simultaneous game).

For notational convenience, let

L(n) =
(µnbnd)2

4S
=

µ2
n

µ2
n0−1 − µ2

n0

ε (A-8)

be the principal’s expected loss in (A-3) from the committee’s biased decision given bnd and the

committee size n. Clearly, L(n) → 0 and nε → 0 as ε → 0. Hence, by (A-3), the principal is

strictly better off by appointing at least one expert for a sufficiently small ε. Suppose, to the

contrary, that the principal deviates to a committee size n1 < n0 − 1. Then, from (A-3), it must

be that
S
4
− L(n1)− n1ε ≥ S

4
− L(n0 − 1)− (n0 − 1)ε, (A-9)

or, using (A-8) and simplifying terms,

n0 − 1− n1 ≥
µ2

n1
− µ2

n0−1

µ2
n0−1 − µ2

n0

. (A-10)

Since, by Fact A2, the change µ2
n − µ2

n+1 is strictly negative and strictly decreasing in n (i.e., µ2
n

is strictly decreasing and strictly “convex”), the following slope conditions must also hold:

µ2
n0−1 − µ2

n1

n0 − 1− n1
<

µ2
n0
− µ2

n0−1

n0 − (n0 − 1)
⇔ n0 − 1− n1 <

µ2
n1
− µ2

n0−1

µ2
n0−1 − µ2

n0

, (A-11)

contradicting (A-10). An analogous argument also rules out a deviation to n2 > n0. Hence, the

principal’s mixing between n0 − 1 and n0 is an equilibrium.

We now prove that this is the unique equilibrium. To do so, suppose that the principal

mixes over some committee sizes nl < nh such that nh − nl > 1. We argue that the principal

would strictly benefit from choosing n ∈ (nl , nh) in this case. Suppose not. Then, by a similar

payoff comparison to (A-9), we find

S
4
− L(nl)− nlε ≥

S
4
− L(n)− nε,

which reveals
µ2

nl
− µ2

nh

nh − nl
≥

µ2
nl
− µ2

n

n− nl
.
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Again, that contradicts the slope conditions similar to (A-11). Hence, nh − nl = 1. Next, we

argue that the principal does not mix over three consecutive committee sizes. To the contrary,

suppose that she mixes over nl , nl + 1, and nl + 2. Then, the principal must be indifferent

across:

S
4
−
(µnl

bnd)2

4S
− nlε =

S
4
−
(µnl+1bnd)2

4S
− (nl + 1)ε =

S
4
−
(µnl+2bnd)2

4S
− (nl + 2)ε,

which implies that
µ2

nl
− µ2

nl+1

4S
(bnd)2 = ε =

µ2
nl+1 − µ2

nl+2

4S
(bnd)2,

and in turn,

µ2
nl
− µ2

nl+1 = µ2
nl+1 − µ2

nl+2.

But that contradicts Fact A2 (that µ2
n − µ2

n+1is strictly decreasing in n). Hence, the principal

mixes only between nl and nl + 1 for some nl . Finally, to prove that nl = n0 − 1, we consider

the two complementary cases. If nl ≥ n0, then, by setting the committee size n0 with probability

1, the principal would be strictly better off because n0 would deter bribing and economize on

the participation cost, ε. Hence, nl ≤ n0 − 1. If nl ≤ n0 − 2, then bo(φ) > 0 for all φ ∈ [0, 1]

(since, in this case, both nl and nl + 1 are strictly lower than n0). But then, for a sufficiently

small ε, the principal would be strictly better off by choosing a larger committee size of n0,

that ensures no bribing. Hence, nl ≥ n0 − 1 and together, nl = n0 − 1, establishing the unique

mixing.

Claim A6 The principal’s expected payoff under nondisclosure πnd
P (N) is increasing in N for N ∈

[n0, N), where N =
⌈ µv

S

⌉
.

Proof. Pick any N1 ∈
[
n0, N

)
and define N2 =

vµn0(N1)−1

S . By construction, n0(N2) =

n0(N1)− 1 and given that n0(N) is decreasing in N, we have that (i) N2 > N1 and (ii) n0(N) =

n0(N1) for any N ∈ (N1, N2). Suppose N2 /∈
[
n0, N

)
. Then, from (ii), n0(N) = n0(N1) for any

N > N1 in
[
n0, N

)
. That implies πnd

P (N1) = πnd
P (N). Next, suppose N2 ∈

[
n0, N

)
. Given that

n0(N2) = n0(N1)− 1, we observe from Claim A5 that n0(N1)− 1 is in the principal’s mixing

support when N ∈ {N1, N2}. Then we obtain

πnd
P (N2)− πnd

P (N1) =

[
µ2

n0(N1)−1

µ2
n0(N1)−1 − µ2

n0(N1)

−
µ2

n0(N1)−1

µ2
n0(N1)−2 − µ2

n0(N1)−1

]
ε > 0

where the inequality follows from the strict “convexity” of µ2
n in n (Fact A2), guaranteeing that

µ2
n0(N1)−2 − µ2

n0(N1)−1 > µ2
n0(N1)−1 − µ2

n0(N1)
. Hence, πnd

P (N1) ≤ πnd
P (N) for any N in (N1, N2],

where the inequality is strict at N2.
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By the same line of argument as above, there is some N3 in (N2, N) such that πnd
P (N2) ≤

πnd
P (N) for any N in (N2, N3]. Consequently, πnd

P (N1) ≤ πnd
P (N) for any N in (N1, N3]. It-

eratively applied, we obtain a sequence N2, N3, ..., Nk, such that (I) n0(Ni) > n0(Ni+1), (II)

πnd
P (Ni) < πnd

P (Ni+1), and (III) n0(N) = 1 for any N ≥ Nk. Moreover, from (III), it is clear

that N = dNke. Thus, πnd
P (N1) ≤ πnd

P (N) for every N in (N1, N). Finally, since N1 was chosen

arbitrarily from
[
n0, N

)
, the claim follows.

Proof of Proposition 2. As indicated in Proposition 1, under disclosure, bribing is deterred

by a committee of size n0, which is independent of N and implies that πd
P =

S
4 − n0ε. Define

∆(N) = πd
P − πnd

P (N), and let N such that if ∆(n0) ≤ 0, N = n0, and if ∆(n0) > 0, N is the

smallest N such that ∆(N) ≤ 0 and ∆(N − 1) > 0. We argue that N ∈
[
n0, N

]
.

Suppose
[
n0, N

)
6= ∅. By Claim A6, ∆(N) is decreasing in N. Moreover, ∆(N) = − (n0 − 1) ε <

0 because πnd
P = S

4 − ε for N ≥ N by Claim A4, and n0 ≥ 2. Thus, if
[
n0, N

)
6= ∅, N is well-

defined in
[
n0, N

]
. If, on the other hand,

[
n0, N

)
= ∅ – i.e n0 = N, then, it trivially follows that

N = N. From the definitions of ∆(N) and N, and given that ∆(N) is decreasing in N, part (ii)

follows. Similarly, if N ≥ N, the principal strictly prefers nondisclosure since ∆(N) < 0 in that

region. Moreover, for N ∈ [N, N), the principal uniquely mixes between the committee sizes

nnd = n0 and n0− 1, as established in Claim A5. Finally, for N ≥ N, the optimal committee has

nnd = 1 as established in the text, proving part (i).

Proof of Proposition 3. If N ≥ N, Proposition 2 reveals that nnd = 1 and bnd = 0, which,

again, the principal can replicate under partial disclosure but cannot improve upon.

Now consider n0 ≤ N < N. As in the proof of Proposition 2, define ∆(N) = πd
P − π

pd
P (N),

where π
pd
P represents the principal’s payoff under partial disclosure. Also define N0 such that

if ∆(n0) ≤ 0, N0 = n0, and if ∆(n0) > 0, N0 is the smallest N such that ∆(N) < 0 and

∆(N − 1) ≥ 0. We show that N0 ∈
[
n0, N

]
. Suppose that

[
n0, N

)
6= ∅. Since n0 and n0(N)

(recall that n0 does not depend on N) are the smallest committee sizes that deter bribing under

full and partial disclosure regimes, we have that

∆(N) = [n0(N)− n0] ε.

By Claim A4, ∆(N) is decreasing in N, and ∆(n0) ≤ 0. Moreover, n0(N) = 1 and thus ∆(N) =

(1− n0)ε < 0. Together, these three observations imply that N0 ∈
[
n0, N

]
.

If
[
n0, N

)
= ∅ – i.e., n0 = N, it trivially follows that N0 = N. From the definition of

N0, and given that ∆(N) is decreasing in N, the principal strictly prefers partial disclosure to

full disclosure whenever N0 ≤ N < N. To see that the principal also strictly prefers partial
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disclosure to no disclosure in this region of N, we simply note that

S
4
− n0(N)ε = π

pd
P > πnd

P (N) =
S
4
− L(n0(N))− n0(N)ε,

since L(n0(N)) > 0 as defined in (A-8).

Proof of Proposition 4. The first two observations directly follow from (7) and the fact

that µn
n is strictly decreasing in n. To show the last observation, note that under ex ante vote

justification, member i who receives bribe b accepts the project if and only if: (I) s > 0; or (II)

s ≤ 0 and φ−i × (s + αib) − J(s) > 0, where φ−i > 0 is the probability that other members

accept the project. Re-arranging (II), we have s+ αib− 1
φ−i

J(s) > 0. Since 1
φ−i
≥ 1, the result

follows.

Proof of Proposition 5. Suppose that ηE <
S
4 . Conjecturing no bribery in equilibrium, each

committee member cares only about s, making information about s a pure public good among

them. Since information decisions are sequential and observable within the committee, it is

clear that only the last member in the sequence will pay ηE and become informed. Let i be the

informed member, who is known to member j 6= i but unknown to the agent. In particular, the

agent believes that each member is equally likely to be informed. Let the agent bribe m out of

n members randomly, each in the amount of b ≥ 0. Note that an uninformed member j votes

to accept the project since his expected payoff cannot be lower than E[s|s > −αib] ≥ 0 – the

expected social value of the project when he does not receive b, but the informed member does.

Then, with probability m
n , the agent targets the informed member, in which case his project

is accepted with probability
(

S+µb
2S

)
whereas, with probability

(
1− m

n

)
, the agent misses the

informed member, in which case his project is accepted with probability 1
2 . Together, the agent

solves

max
b≥0,m≥0

πA =

[
m
n

(
S+ µb

2S

)
+
(

1− m
n

) 1
2

]
(v−mb).

Simplifying terms and letting B = mb,

max
B

πA =

(
S+ µ

n B
2S

)
(v− B).

From here, B∗ = 0 if and only if n ≥ µv
S , implying an optimal committee of size: nE =

⌈ µv
S

⌉
, as

claimed.

Proof of Proposition 6. First it can be verified from (8) that an informed agent will choose a

positive bribe for any given s < 0 (otherwise, he knows his project will be rejected with proba-

bility 1). If the principal expects an uninformed agent, she optimally will set the committee size

to be n0 and deter bribing by Proposition 1. To determine information acquisition by the agent,
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recall from the text that the value of information ∆(n) is strictly decreasing in n. Hence, since

n0 ≤ N by Assumption 2, ∆(N) ≤ ∆(n0), with a strict inequality for n0 < N. If ∆(n0) < ηA, the

agent remains uninformed for all n and the optimal committee size is therefore n0. At the other

extreme, if ηA < ∆(N), then the agent becomes informed for all n, and to minimize bribing for

all s, the principal forms the largest committee of size N. Finally, suppose ∆(N) ≤ ηA ≤ ∆(n0).

Then, the optimal committee size is the smallest n ∈ {n0, ..., N} that discourages information

acquisition – i.e., ∆(n) ≤ ηA < ∆(n − 1) – and since such n ≥ n0, it also deters bribing. As

noted in the proposition, that corresponds to n =
⌈
∆−1(ηA)

⌉
. Since ∆−1(ηA) is decreasing in

ηA, so is the optimal committee size.

Proof of Proposition 7. Note from (11) that πt
A is strictly concave in B. Hence, Bt = 0 if

and only if
∂

∂B
πt

A

∣∣∣∣
B=0

=
µn
n v− S

2S
≤ 0⇐⇒ µn

n
≤ S

v
,

which, by Proposition 1, implies that the principal can deter bribing by choosing a committee

size n ≥ n0. Without loss of generality, set B = 0, which reduces (11) to:

πA =

(
S+ µn

n T
2S

)
(v+ T)− T. (A-12)

Clearly, πA is strictly convex in T. Hence, the optimal threat is either Tt = 0 or T. And Tt = 0

if and only if πA|T=T ≤ πA|T=0 or, more explicitly,(
S+ µn

n T
2S

)
(v+ T)− T ≤ v

2
. (A-13)

Simple algebra reveals that (A-13) holds if and only if

µn
n
≤ S

v+ T
. (A-14)

Since µn
n is strictly decreasing in n, the optimal committee size nt that deters capture is the

smallest integer that satisfies (A-14) and it is decreasing in T, as claimed.

Proof of Proposition 8. The agent has no local incentive to bribe if ∂πA/∂b|b=0 ≤ 0 or,

equivalently,
dpA(φ

∗; λ, n)
db

(v− nb)− npA(φ
∗; λ, n)

∣∣∣∣
b∗=0
≤ 0. (A-15)
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Using (12) and (13), and letting φ∗|b=0 = φ0, (A-15) reduces to:

αv
S
≤ n(2− λ− λn)pA(φ0; λ, n)

∂pA(φ0; λ, n)/∂φ

=
n(2− λ− λn)pA(φ0; λ, n)

nλpA(φ0; λ, n− 1) + (1− λ+ λφ0)
n − (λφ0)

n

≡ RHS(λ, n).

Note that

RHS(λ, n) ≤ n(2− λ− λn)pA(φ0; λ, n)
nλpA(φ0; λ, n) + (1− λ+ λφ0)

n − (λφ0)
n

<
n(2− λ− λn)pA(φ0; λ, n)

nλpA(φ0; λ, n)

=
2
λ
− 1− λn−1

≡ RHS(λ, n).

Clearly, (1) RHS(λ, n) is strictly decreasing in λ, with RHS(λ, n) → 0 as λ → 1, and (2)

RHS(λ, n) is strictly increasing in n, with RHS(λ, n) → 2
λ − 1 as n → ∞. Recall n0 =

⌈
αv
S

⌉
and let λ = 2

n0+1 (λ < 1 since n0 ≥ 2 by Assumption 1). Then, by (1) and (2), RHS(λ, n) < n0

for λ ≥ λ for all n. Thus, ∂πA/∂b|b=0 > 0 for λ ≥ λ, implying that no committee size deters

bribing.

Next, note that pA =
1
2 and φ0 =

1
2 for λ = 0. Therefore, RHS(0, n) = n, which implies that

n = n0 satisfies (A-15) for λ = 0. Moreover, since RHS(λ, n) is continuous in λ, there exists

λ > 0 such that (A-15) is satisfied for some n < ∞ and λ < λ. One can show further that πA(.)

is single-peaked in b in this region, so deterring bribing locally is sufficient.

Appendix B: on symmetric bribes

Throughout the analysis, the agent is assumed to bribe members equally. In this appen-

dix, we show that such equal bribing is without loss of generality (as claimed in Remark 1

in the text) if a monotone hazard-rate condition on the (random) corruptibility parameter α is

satisfied.

Proposition B1 Consider a committee of size n and the unanimity rule as in the baseline model and

suppose that d
dα

(
G′(α)

1−G(α)

)
≥ 0 for all α ∈ [α, α]. Then, fixing the total bribe B > 0, it is optimal

for the agent to bribe members equally – i.e., b∗i =
B
n .
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Proof. Fix the total bribe B > 0 and let b = (b1, ..., bn) be the profile of individual bribes.

Recall that given bi, member i votes for the project if s+ αibi > 0, where αi ∼ G(α). Let zi = αibi

and zmin = min1≤i≤n{zi}. Then, under the unanimity rule, the pivotal voter has zmin whose

cumulative distribution is found to be

H(z; b) = Pr{zmin ≤ z}

= 1− Pr{zmin > z}

= 1−∏i Pr(zi > z)

= 1−∏i Pr(αi >
z
bi
).

Hence,

H(z; b) = 1−∏i

(
1− G

(
z
bi

))
. (B-1)

Note that fixing the total bribe, the agent chooses b that maximizes the probability of the

project’s acceptance:

max
b

∫ ∞

0

(
S+ z

2S

)
dH(z; b) s.t. ∑

i
bi = B. (B-2)

To solve (B-2), it suffices to minimize H(z; b) or, equivalently, maximize 1− H(z; b), for every

z ∈ (0, ∞), which, using (B-1), reduces the agent’s problem to:

max
b

∏i

(
1− G

(
z
bi

))
s.t. ∑

i
bi = B. (B-3)

Without loss of generality, we replace the objective function with its log transformation: Λ(b; z) ≡
∑i ln

(
1− G

(
z
bi

))
. Note that if a solution, b∗, to (B-3) exists, it must be that b∗i > 0 for all i;

otherwise, Λ(; z) = −∞, which can be strictly improved upon. Since Λ(b; z) is continuous in

b when bi > 0 for all i, b∗ exists. Moreover, b∗ is unique if Λ(b; z) is strictly concave in b. But

the strict concavity easily follows from the facts that ∂2

∂bi∂bj
Λ(b; z) = 0 for all i 6= j, and

∂2

∂b2
i

Λ(b; z) = − d
dα

(
G′(α)

1− G(α)

)(
z
b2

i

)2

+
G′(α)

1− G(α)

(
−2z

b3
i

)
< 0,

under the assumption that d
dα

(
G′(α)

1−G(α)

)
≥ 0. Since a unique solution must be symmetric, we

have that b∗i =
B
n for all i.
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