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Abstract

Software metrics collected during project development
play a critical role in software quality assurance. A soft-
ware practitioner is very keen on learning which software
metrics to focus on for software quality prediction. While
a concise set of software metrics is often desired, a typical
project collects a very large number of metrics. Minimal
attention has been devoted to finding the minimum set of
software metrics that have the same predictive capability
as a larger set of metrics — we strive to answer that ques-
tion in this paper. We present a comprehensive comparison
between seven commonly-used filter-based feature ranking
techniques (FRT) and our proposed hybrid feature selection
(HFS) technique. Our case study consists of a very high-
dimensional (42 software attributes) software measurement
data set obtained from a large telecommunications system.
The empirical analysis indicates that HFS performs better
than FRT; however, the Kolmogorov-Smirnov feature rank-
ing technique demonstrates competitive performance. For
the telecommunications system, it is found that only 10% of
the software attributes are sufficient for effective software
quality prediction.

Keywords: software metrics, quality prediction, feature
ranking, hybrid feature selection, high-dimensional data.

1 Introduction

In software quality prediction, the quality and character-
istics of the underlying software measurement data plays
an important role in the efficacy of the prediction model.
One aspect of such characteristic is “which software met-
rics are good predictors for a given software system?”. A
typical mid- to large-scale software project collects sev-
eral software metrics as candidates for defect prediction [6].
However, it is likely that many of them provide redundant
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information, or provide no information, or in some cases,
have an adverse effect on the prediction model. This study
strives to answer the practical question of “for a given soft-
ware project, what is minimum number of software metrics
that should be considered for building a defect prediction
model?”

A typical software quality prediction model is trained
using software metrics (independent variables) and fault
data (dependent variable) that have been collected from
previously-developed software releases or similar projects.
Subsequent to model evaluation, the quality of currently-
under-development program modules can be estimated: for
example, fault-prone (fp) or not-fault-prone (nfp). Such a
software quality model has been the subject of intensive
research [19, 22, 27]. However, very little attention has
been given to the problem of attribute selection in software
measurement data for defect prediction. Some studies have
shown that the performance of software quality prediction
model can be improved when irrelevant and redundant fea-
tures are eliminated from the original software measure-
ment data set [9, 15, 24].

We explore the data mining concept of feature selection
and investigate those technologies in the context of soft-
ware quality prediction and software metrics. Various tech-
niques developed from data mining and machine learning
have been successfully applied for deriving new informa-
tion in a variety of domains [4, 25]. Feature selection (or
attribute selection) has become a vital pre-processing step
in most data mining and machine learning problems. In
addition to improving the quality of the machine learning
data set, feature selection is particularly useful for high-
dimensional data — for example, software measurement data
sets considered in this study. The aim of attribute selection
is to find a feature subset (i.e., data reduction) that can learn
and describe the data set such that it is equivalent to the
same task being done by the original data set (i.e., without
any data reduction).
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The two general categories for feature selection are fil-
ters and wrappers. Filters are algorithms in which a feature
subset is selected without involving any learning (classifier)
algorithm. Wrappers are algorithms that use feedback from
a learning algorithm to determine which feature(s) to in-
clude in building a classification model. Another catego-
rization for feature selection techniques is feature ranking
techniques and feature subset selection techniques. Feature
ranking ranks the attributes according to their individual
predictive power, while feature subset selection approaches
select subsets of attributes that collectively have good pre-
dictive power. From a software engineering point of view,
feature selection can reduce the time for metrics collection,
model calibration, and model evaluation of future software
development efforts of similar systems.

The focus of this paper is to evaluate several feature
selection techniques, including seven filter-based ranking
techniques (FRT) and our proposed hybrid feature selec-
tion (HFS) method. The HFS method consists of a feature
ranking technique followed by a consistency-based feature
subset selection, i.e., automatic hybrid search (AHS) [16,
20]. The seven feature ranking techniques considered are:
chi-square (CS), information gain (IG), gain ratio (GR),
Kolmogorov-Smirnov statistic (KS), two forms of the Re-
liefF algorithm (RLF), and symmetrical uncertainty (SU).
Our empirical study of the different feature selection tech-
niques will answer the question posted earlier, i.e. “what is
minimum number of software metrics that should be con-
sidered for building a defect prediction model for a given
software project?” The aim is to do so without degrading
the generalization power of the software quality prediction
model.

The answer to the above question is particularly im-
portant because of the high-dimensionality of the software
measurement data of our case study. The four consecutive
releases of a very large telecommunications system are con-
sidered as case study data, and include 42 software met-
rics and defect data collected for every program module.
The software quality prediction models are built using five
different classification algorithms [28]: naive Bayes, multi-
layer perceptrons, K -nearest-neighbor, support vector ma-
chine, and logistic regression. One of the project releases
is considered as training data, while the other three releases
are considered as test data.

The remainder of the paper is organized as follows. We
review relevant literature on feature selection in Section 2.
Section 3 provides detailed information about the filter-
based feature ranking techniques, the proposed hybrid fea-
ture selection algorithm, the five classifiers, and the clas-
sifier performance metric used in our study. Section 4 pro-
vides a description of the case study data sets, and Section 5
presents empirical results of our study. Finally, we conclude
the paper in Section 6, and provide suggestions for future
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work.

2 Related Work

This section provides a brief coverage on key feature se-
lection works in the fields of data mining and software en-
gineering. An exhaustive coverage is avoided due to space
considerations.

Liu and Yu [21], provide a survey of feature selection
algorithms and present an integrated approach to intelli-
gent feature selection. Guyon and Elisseeff [8] outline key
approaches used for attribute selection, including feature
construction, feature ranking, multivariate feature selection,
efficient search methods, and feature validity assessment
methods. Hall and Holmes [9] investigated six attribute
selection techniques that produce ranked lists of attributes
and applied them to several data sets from the UCI machine
learning repository. Jong et al. [14] introduced methods for
feature selection based on support vector machines. Ilczuk
et al. [12] highlighted the importance of attribute selection
in judging the qualification of patients for cardiac pace-
maker implantation. In the context of text mining, where
attributes are binary in value, Forman [7] investigates mul-
tiple filter-based feature ranking techniques. Most of the
above works have focuses on feature selection with cate-
gorical data or binary data; in contrast, this paper focuses
on feature selection with numerical/continuous data.

Rodriguez et al. [24, 25] applied attribute selection with
three filter models and three wrapper models to five soft-
ware engineering data sets. It was stated that the wrap-
per model was better than the filter model; however, that
came at a very high computational cost. Their conclusions
were based on evaluating models using cross-validation in-
stead of an independent test data set. It is known in the
software engineering community that prediction models are
best evaluated based on their generalization performance,
i.e., using a test data set. In our study, three independent
test data sets are used for evaluating the different prediction
models.

3 Methodology
3.1 Filter-Based Feature Ranking techniques

Feature ranking assesses attributes individually and
ranks attributes according to their individual predictive
power. Filter feature ranking techniques (FRT) rank fea-
tures independently without involving any learning algo-
rithm that will use the selected features. The procedure of
feature ranking is to score each feature according to a par-
ticular method, allowing the selection of the best set of fea-
tures. The advantage of feature ranking is that it requires



only the computation and sorting of the scores of each fea-
ture individually. We discuss the feature ranking techniques
investigated in our study: chi-square (CS), information gain
(IG), gain ratio (GR), two types of ReliefF (RFF and RFT),
symmetrical uncertainty (SU), and Kolmogorov-Smirnov
method (KS). For specific algorithmic details on these tech-
niques, the reader is referred to the various cited references.

The chi-square (CS) [3] test is used to examine if there
is ‘no association’ between two attributes, i.e. whether the
two variables are independent. CS is more likely to find
significance to the extent that (1) the relationship is strong,
(2) the sample size is large, and/or (3) the number of values
of the two associated features is large. Information gain,
gain ratio, and symmetrical uncertainty are measures based
on the concept of entropy, which is based on information
theory [28]. For binary class problem, such as fp and nfp,
the entropy is 0 if there is at most one class present and the
entropy is 1 (at its maximum) when the proportions of all
presented classes are equal.

Information gain (IG) [28] is the information provided
about the target class attribute Y, given the value of other
attribute X. Information gain measures the decrease of the
weighted average impurity of the partitions, compared with
the impurity of the complete set of data. A drawback of
IG is that tends to prefer attributes with a larger number of
possible values, i.e, if one attribute has a larger number of
values, it will appear to gain more information than those
with fewer values, even if they are actually no more infor-
mative. One strategy to counter this problem is to use the
gain ratio (GR), which penalizes multiple-valued attributes.
Symmetrical uncertainty (SU) [28] is another way to over-
come the problem of IG’s bias toward attributes with more
values, and it does so by dividing it by the sum of the en-
tropies of X and Y.

Relief is an instance-based feature ranking technique in-
troduced by Kira and Rendell[17]. ReliefF is an extension
of the Relief algorithm that can handle noise and multi-
class data sets, and is implemented in the WEKA tool [28].
When the ‘weightByDistance’ (weight nearest neighbors by
their distance) parameter was set as default (false), the algo-
rithm is referred to as RFF; when the parameter was set to
true, the algorithm is referred to as RFT. The Kolmogorov-
Smirnov Method (KS) is a feature selection method re-
cently proposed by our research team [16, 20]. It utilizes
the Kolmogorov-Smirnov statistic to measure the maximum
differences between the empirical distribution function of
the posterior probabilities of instances in each class. The
features can be ranked based on their KS scores, and then
selected according to the number of features needed.
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3.2 Proposed hybrid feature selection method

Feature subset selection techniques search the set of pos-
sible features as a group and evaluate their collective suit-
ability. The Automatic Hybrid Search (AHS), our recently
proposed feature subset selection search method [16, 20],
uses the consistency rate (CR) properties. AHS relies on
the monotonic property of consistency rate, which has the
following facts: (1) the complete attribute set (D) has the
highest consistency rate J, i.e. the consistency rate of any
attribute subset is less than or equal to J; (2) the super-
set of a consistent attribute subset is also consistent; and
(3) if CR(S;,D) < CR(S;,D), then CR(S; N f,D) <
CR(S; N f, D), where f is an attribute not in S; and .S;.

The AHS algorithm works as follows. The consistency
rate of the complete attribute set is computed first, and then
starting with size 1 of any attribute, the attribute subsets that
have the locally highest consistency rate are selected. These
selected attribute subsets will be used to generate supersets.
The process is repeated until finding the attribute subsets
that have the same consistency rate or the specified number
of attributes is reached. If more than one attribute subsets
are generated, the C4.5 [23] classifier will be used to decide
which attribute subset is selected based on an error rate.

We proposed a new hybrid feature selection (HFS)
method which is a combination of a filter-based feature
ranking technique and a consistency-based feature sub-
set selection algorithm, AHS. The proposed HFS method
works as follows: the top 30% of the features are selected
from the full feature set using filter-based feature ranking
techniques. Thus, the original data set is reduced and this
reduced data set is then the input to AHS. A subset of &
features with highest local consistency rate is selected. In
our study, we vary k with values of 2, 3, 4, and 6. These
values may be different for another software project, since
the subset size is likely to depend on the application domain
and project characteristics. The overall structure of HFS is
presented in Figure 1.

Feature
Full Rankings |Select top  [AHS |Selected feature
feature set »130% »isubset (k features)
features

Figure 1. Hybrid Feature Subset Selection
Method

3.3 Classifiers

Software quality prediction models are built with five
different classification algorithms, including naive Bayes
(NB) [13], multilayer perceptron (MLP) [10], K -nearest



neighbors (KNN) [1], support vector machine (SVM) [26],
and logistic regression (LR) [18]. These were selected be-
cause of their common use in software engineering and data
mining, and also because they do not have a built-in feature
selection capability. Unless stated otherwise, we use de-
fault parameter settings for the different learners as speci-
fied in the WEKA data mining tool [28]. Parameter settings
are changed only when a significant improvement in perfor-
mance is obtained.

In the case of MLP, the ‘hiddenLayers’ parameter was
set to ‘3’ to define a neural network with one hidden layer
containing three nodes, and the ‘validationSetSize’ param-
eter was set to ‘10 to cause the classifier to leave 10% of
the training data aside as a validation set to determine when
to stop the iterative training process. For the KNN classi-
fier, the ‘distanceWeighting’ parameter was set to ‘Weight
by l/distance’, the ‘kNN’ parameter was set to ‘30’°, and
the ‘crossValidate’ parameter was set to ‘true’. In addition,
the algorithms was modified slightly so that it chooses the
k which produces the highest mean of the true positive rate
and true negative rate. In the case of SVM, the ’complexity
constant ¢’ was set to ‘5.0’ and ’build Logistic Models’ was
set to ‘true’.

3.4 Performance Evaluation

A two-group classification problem, such as fault-prone
and not-fault-prone, has four possible prediction outcomes:
true positive (TP) (i.e., correctly classified positive in-
stance), false positive (FP) (i.e., negative instance classi-
fied as positive), true negative (TN) (i.e., correctly classified
negative instance), and false negative (FN) (i.e., positive in-
stance classified as negative). The four values form the basis
for several other performance measures that are well known
and commonly used for classifier evaluation.

The performance measure used in our study is the Area
Under the ROC (Receiver Operating Characteristic), abbre-
viated as AUC. The AUC is a single-value measurement,
whose value ranges from 0 to 1. The ROC curve is used
to characterize the trade-off between hit (true positive) rate
and false alarm (false positive) rate [5]. The true positive

rate is computed as %, while the false positive rate

is computed as %. A classifier that provides a large
area under the curve is preferable over a classifier with a

smaller area under the curve.

4 Software Measurement Data Description

The software metrics and defect data for this case study
(denoted as LLTS) was collected from a very large legacy
telecommunications software system. The software, com-
prising of several million lines of code, was developed in

86

Table 1. FRT vs. HFS — NB

Size 2 Size 3 Size 4 Size 6
FRT HFS FRT HFS FRT HFS FRT HFS

SP2 CS 0.6612 0.7223 0.7324 0.7209 0.7557 0.7312 0.7850 0.7409
GR 0.6612 0.7324 0.6992 0.7724 0.7484 0.7701 0.8275 0.8181

1G 0.8198 0.7834 0.8199 0.7733 0.8104 0.8186 08119 0.8158

RFF 0.7839 0.7324 0.7997 0.7696 0.7965 0.7966 0.7955 0.8174

RFT 0.7839 0.7528 0.7797 0.7607 0.7965 0.7828 0.7929 0.8166

SU 0.6815 0.7324 0.8123 0.7724 0.8199 0.8259 0.8261 0.8309

KS 0.8109 0.7554 0.8116 0.8218 0.8114 0.8219 0.8125 0.8230

SP3 CS 0.6420 0.7170 0.7449 0.7300 0.7502 0.7604 0.7330 0.7523
GR 0.6420 0.7385 0.7072 0.7633 0.7519 0.7643 0.8193 0.8079

IG 0.8380 0.7695 0.8330 0.8072 0.8388 0.8442 0.8242 0.8284

RFF 0.8439 0.7385 0.8419 0.7680 0.8380 0.7759 0.8440 0.8258

RFT 0.8439 0.7584 0.8399 0.7773 0.8380 0.7602 0.8317 0.8203

suU 0.7105 0.7385 0.8280 0.7633 0.8308 0.8158 0.8089 0.8106

KS 0.8311 0.7569 0.8227 0.8282 0.8313 0.8244 0.8225 0.8151

SP4 Cs 0.6503 0.6654 0.7301 0.6861 0.7449 0.7091 0.7697 0.7257
GR 0.6503 0.7702 0.6801 0.7939 0.7258 0.7875 0.8113 0.8257

1G 0.8216 0.7853 0.8220 0.7848 0.8315 0.8318 0.8208 0.8225

RFF 0.7799 0.7702 0.7966 0.7696 0.7933 0.8043 0.8058 0.8303

RFT 0.7799 0.7593 0.7711 0.7371 0.7933 0.7748 0.7988 0.8147

SU 0.6925 0.7702 0.7950 0.7939 0.8269 0.8297 0.8266 0.8226

KS 0.7908 0.7832 0.7892 0.8231 0.8236 0.8192 0.8131 0.8124

a large organization by professional programmers using a
proprietary high level procedural language, PROTEL [11].
A decision support system for software measurements and
software quality modeling was periodically used to measure
the static attributes of the most recent version of the code.
The software measurement data sets used in this study con-
sists of 42 software metrics [11], including 24 product met-
rics, 14 process metrics, and 4 execution metrics — these
metrics are not shown due to paper size considerations. The
dependent variable is the class of the program module, fp
(fault-prone) or nfp (not fault-prone). A module with one or
more faults is considered fp, and nfp otherwise.

The software measurement data sets consists of four suc-
cessive releases of the LLTS system. The four data sets are
labeled as SP1, SP2, SP3 and SP4, where each release is
characterized by the same number and type of software at-
tributes, but has a different number of instances (program
modules). The SP1, SP2, SP3 and SP4 data sets consisted
of 3649, 3981, 3541, and 3978 program modules, respec-
tively. A unique characteristic of these data sets is that they
all suffer from class imbalance, where the proportion of fp
modules is much lower that the nfp modules. The propor-
tions of nfp modules of SP1, SP2, SP3 and SP4 are 93.72%,
95.25%, 98.67%, and 97.69%, respectively. The SP1 data
set is used for training purposes, while the SP2, SP3, and
SP4 data sets are used for testing the different software qual-
ity prediction models.

S Empirical Results

In order to evaluate the appropriateness of the & selected
attributes (the minimum set of software metrics for defect
prediction), we varied k£ with values of 2, 3, 4, and 6. For
the LLTS system, we chose [log, 42] as the upper limit of
range for varying the value of k, after consulting a soft-
ware engineering domain expert with more than 20 years
experience in the area of software quality engineering. The



Table 2. FRT vs. HFS — MLP

Size 2 Size 3 Size 4 Size 6
FRT HFS FRT HFS FRT HFS FRT HFS
SP2 Cs 0.6612 0.7456 0.7384 0.7332 0.7600 0.6945 0.7886 0.6939
GR 0.6612 0.7701 0.6091 0.8031 0.7930 0.8095 0.8190 0.8308
1G 0.8241 0.8130 0.8201 0.8205 0.8244 0.8330 0.8185 0.8310
RFF 0.8163 0.7701 0.8006 0.7744 0.8054 0.7972 0.8116 0.8217
RFT 0.8163 0.7633 0.8006 0.7758 0.8054 0.7901 0.8072 0.8258
SU 0.8122 0.7701 0.8149 0.8031 0.8234 0.8256 0.8277 0.8378
KS 0.8142 0.7963 0.8120 0.8222 0.8179 0.8239 0.8159 0.8241
SP3 [ 0.6423 0.7476 0.7524 0.7500 0.7574 0.7134 0.7584 0.7073
GR 0.6423 0.7709 0.5726 0.7886 0.7173 0.7887 0.7982 0.8364
IG 0.8421 0.8009 0.8428 0.8154 0.8440 0.8456 0.8494 0.8504
RFF 0.8447 0.7709 0.8353 0.7577 0.8419 0.7722 0.8506 0.8414
RFT 0.8447 0.7663 0.8429 0.7658 0.8419 0.7852 0.8439 0.8452
SU 0.7663 0.7709 0.8336 0.7886 0.8416 0.8346 0.8397 0.8415
KS 0.8331 0.7839 0.8308 0.7886 0.8515 0.8385 0.8531 0.8396
SP4 cs 0.6506 0.6817 0.7421 0.6913 0.7562 0.6666 0.7772 0.6697
GR 0.6506 0.7837 0.6149 0.8153 0.7667 0.7872 0.8094 0.8177
1G 0.8239 0.8113 0.8247 0.8094 0.8269 0.8317 0.8269 0.8323
RFF 0.7895 0.7837 0.8069 0.7813 0.8077 0.7982 0.8158 0.8197
RFT 0.7895 0.7905 0.7859 0.7570 0.8077 0.7920 0.8103 0.8218
SU 0.7789 0.7837 0.7914 0.8153 0.8278 0.8290 0.8304 0.8342
KS 0.7881 0.8112 0.7869 0.8217 0.8281 0.8199 0.8258 0.8208
Table 3. FRT vs. HFS — KNN
Size 2 Size 3 Size 4 Size 6
FRT HFS FRT HFS FRT HFS FRT HFS
SP2 cs 0.6552 0.6893 0.6798 0.6102 0.6989 0.6729 0.7922 0.7301
GR 0.6552 0.7446 0.6634 0.7488 0.7825 0.7582 0.7804 0.7840
1G 0.7140 0.7636 0.7735 0.7401 0.7655 0.7618 0.7327 0.7919
RFF 0.7235 0.7446 0.7176 0.7128 0.7143 0.7362 0.7277 0.7662
RFT 0.7235 0.7140 0.7110 0.6846 0.7143 0.7249 0.7891 0.7557
SU 0.7534 0.7446 0.7735 0.7488 0.7794 0.7601 0.7740 0.7837
KS 0.7729 0.7460 0.7743 0.7516 0.7727 0.7708 0.7717 0.7799
SP3 Cs 0.6215 0.6500 0.6686 0.5497 0.6986 0.7277 0.6820 0.7606
GR 0.6215 0.7233 0.6004 0.7447 0.7211 0.7529 0.7604 0.7445
IG 0.7900 0.7436 0.7443 0.7577 0.7615 0.7652 0.7801 0.7867
RFF 0.7485 0.7233 0.7458 0.7311 0.7269 0.8354 0.7770 0.7958
RFT 0.7485 0.6706 0.7174 0.7288 0.7269 0.7602 0.7398 0.7774
SU 0.6402 0.7233 0.7467 0.7447 0.7394 0.7329 0.7704 0.7467
KS 0.7411 0.7092 0.7414 0.7486 0.7532 0.7269 0.7692 0.7516
SP4 cs 0.6394 0.5890 0.6444 0.5227 0.6684 0.5108 0.6993 0.6794
GR 0.6394 0.7479 0.6275 0.7510 0.7543 0.7273 0.7602 0.7570
1G 0.6784 0.7426 0.7804 0.7407 0.7796 0.7589 0.7893 0.7817
RFF 0.7187 0.7479 0.6791 0.6940 0.6970 0.7086 0.7601 0.7943
RFT 0.7187 0.6863 0.6787 0.6556 0.6970 0.7174 0.7677 0.7888
SU 0.7447 0.7479 0.7454 0.7510 0.7833 0.7634 0.7623 0.7603
KS 0.7541 0.7388 0.7374 0.7468 0.7741 0.7385 0.7845 0.7799
Table 4. FRT vs. HFS — SVM
Size 2 Size 3 Size 4 Size 6
FRT HFS FRT HFS FRT HFS FRT HFS
SP2 Cs 0.6348 0.5000 0.7351 0.3002 0.7559 0.7480 0.6030 0.6837
GR 0.6348 0.7432 0.4828 0.5951 0.6363 0.4784 0.7214 0.4890
IG 0.6471 0.5041 0.7838 0.7722 0.7194 0.8004 0.6182 0.7934
RFF 0.6844 0.7432 0.6520 0.5819 0.5967 0.5511 0.6689 0.7776
RFT 0.6844 0.7269 0.7801 0.5169 0.5967 0.7520 0.5194 0.7031
SU 0.5395 0.7432 0.7052 0.5951 0.8050 0.6902 0.2820 0.7697
KS 0.7884 0.5968 0.6729 0.7000 0.8106 0.6902 0.8000 0.6166
SP3 cs 0.6321 0.4997 0.7484 0.2508 0.7502 0.7656 0.5415 0.6456
GR 0.6321 0.7522 0.4701 0.6445 0.6152 0.5555 0.7613 0.4943
1G 0.6763 0.5818 0.8283 0.7993 0.6200 0.8437 0.6969 0.7330
RFF 0.7347 0.7522 0.6953 0.5291 0.6213 0.4463 0.7039 0.8465
RFT 0.7347 0.7481 0.8267 0.4208 0.6213 0.7494 0.4278 0.7443
SU 0.5352 0.7522 0.6766 0.6445 0.8340 0.6571 0.2763 0.8409
KS 0.8293 0.5435 0.7251 0.6967 0.8253 0.6862 0.8373 0.6496
SP4 cs 0.6355 0.4999 0.7398 0.3590 0.7526 0.6985 0.6012 0.5900
GR 0.6355 0.7612 04752 0.5845 0.6570 0.6664 0.6980 0.5795
1G 0.6979 0.5460 0.7645 0.7992 0.6412 0.8027 0.6431 0.7319
RFF 0.7475 0.7612 0.7126 0.5099 0.6206 0.3684 0.6414 0.7532
RFT 0.7475 0.7385 0.7759 0.3490 0.6206 0.7451 0.4210 0.6649
SU 0.5398 0.7612 0.6917 0.5845 0.8122 0.6642 0.2948 0.7608
KS 0.7683 0.5709 0.6706 0.6662 0.7839 0.6504 0.8094 0.5472
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Table 5. FRT vs. HFS - LR

Size 2 Size 3 Size 4 Size 6
FRT HFS FRT HFS FRT HFS FRT HFS

SP2 CS 0.6612 0.7458 0.7377 0.7324 0.7608 0.7282 0.7936 0.7386
GR 0.6612 0.7701 0.7130 0.8054 0.8227 0.8113 0.8176 0.8294

1G 0.8249 0.8103 0.8260 0.8170 0.8233 0.8338 08178 0.8310

RFF 0.8077 0.7701 0.8121 0.7729 0.8129 0.8078 0.8180 0.8338

RFT 0.8077 0.7641 0.8084 0.7687 0.8129 0.7930 0.8183 0.8294

SU 0.8117 0.7701 0.8170 0.8054 0.8277 0.8295 0.8275 0.8367

KS 0.8132 0.7968 0.8170 0.8247 0.8224 0.8291 0.8197 0.8336

SP3 CS 0.6423 0.7478 0.7529 0.7508 0.7552 0.7455 0.7561 0.7687
GR 0.6423 0.7709 0.7155 0.7878 0.7875 0.7839 0.8163 0.8427

IG 0.8441 0.7997 0.8433 0.8181 0.8474 0.8483 0.8529 0.8528

RFF 0.8456 0.7709 0.8444 0.7606 0.8448 0.7824 0.8522 0.8425

RFT 0.8456 0.7686 0.8470 0.7619 0.8448 0.7853 0.8481 0.8443

sU 0.7653 0.7709 0.8327 0.7878 0.8425 0.8397 0.8421 0.8444

KS 0.8335 0.7829 0.8315 0.8442 0.8484 0.8424 0.8477 0.8489

SP4 &S 0.6506 0.6819 0.7419 0.6958 0.7556 0.6993 0.7786 0.7259
GR 0.6506 0.7836 0.6861 0.8160 0.7871 0.8050 0.8081 0.8265

1G 0.8272 0.8085 0.8277 0.8125 0.8332 0.8358 0.8361 0.8374

RFF 0.7873 0.7836 0.8102 0.7843 0.8094 08112 0.8182 0.8354

RFT 0.7873 0.7937 0.7862 0.7465 0.8094 0.7977 0.8182 0.8295

Su 0.7789 0.7836 0.7898 0.8160 0.8298 0.8343 0.8335 0.8357

KS 0.7866 0.8119 0.7862 0.8270 0.8314 0.8271 0.8313 0.8303

expert concluded that for a high-dimensional software mea-
surement data, such as LLTS, [log, n] (n is the number of
available software metrics) adequately represents the upper
limit for the number of selected attributes for defect predic-
tion. The results presented in this section are generalization
results, i.e., prediction for the test data sets.

We first used the seven filter-based feature ranking tech-
niques to order the attributes based on their respective crite-
ria. Then the top 2, 3, 4, or 6 features were selected from a
given feature ranking. This reduced set of software met-
rics then forms the underlying training data for building
the software quality prediction models. The algorithm for
the filter-based feature ranking techniques and the subse-
quent classification modeling is presented in Figure 2. Sim-
ilarly, the algorithm of our proposed hybrid feature selection
method [16, 20] and the subsequent classification modeling
is presented in Figure 3.

The HFS technique uses a feature subset selection search
algorithm. To determine the attribute search space, the top
30% of the number of software attributes (i.e., 12 out of 42
features) were first extracted from each feature ranked list —
this was once again based on the domain experts recommen-
dation. In addition to reducing the search space for the AHS
search algorithm, the top 12 attributes of a given ranking
represents the 12 most relevant software metrics for fault-
proneness prediction. From this top 12 attributes, differ-
ent k features were selected using the AHS algorithm [20],
where k was varied with values of 2, 3, 4, and 6. The classi-
fication performances were evaluated in terms of the perfor-
mance metric, AUC. All the results are reported in Tables 1
through 5, one for each classifier.

In the tables, each value is determined by five dimen-
sions: (1) feature selection technique (FRT vs. HFS); (2)
number of selected attributes (2, 3, 4 and 6); (3) ranking
technique (CS, GR, IG, RFF, RFT, SU and KS); (4) test
datasets (SP2, SP3 and SP4); and (5) five classifiers (NB,
MLP, KNN, SVM and LR). For example, the first value



for each ranking technique (CS, GR, IG, RFF, RFT, SU and KS)
rank features using training data SP1
select top k features from each ranked list (k=2, 3,4 and 6)
for each size k of feature subset
for each classifier (NB, MLP, KNN, SVM, and LR)
build classification models on SP1
validate the model and collect the performance measure
using test data SP2, SP3, and SP4
end
end
end

Figure 2. FRT experimental procedure

in Table 1, 0.6612, refers to the predictive accuracy (AUC
value) of the NB classifier built with two attributes on the
first test dataset (SP2), where the two attributes were se-
lected using the CS ranking technique. A total of 840 values
are included in the five tables.

We conducted a three-way analysis of variance
(ANOVA) F-test [2] on the performance metric, AUC, to
statistically examine the various effects on the performances
of the classification models. We concentrated on classifi-
cation performances that were influenced by various fea-
ture selection techniques and different size (k) of the se-
lected attribute subset. Hence, the ANOVA analysis is per-
formed across all the five learners and across all three test
datasets. The three ANOVA factors are: Factor A which
represents the two different groups of feature selection tech-
niques (FRT and HFS); Factor B which represents the four
different sizes that were inspected for the attribute selec-
tion; and Factor C which represents the seven filter-based
ranking techniques. The interaction effects of two factors,
A x B and AxC, were also considered in the ANOVA test.
Note that a total of 56 subsets of attributes were used in the
ANOVA test.

The three-way ANOVA test result is presented in Table 6.
The p-values for the factors A and B, and the interaction
terms AxB and AxC are less than a typical cutoff value
of 0.05 — indicating the classification performances are not
the same for all groups in each factor or term. In other
words, the classification performances are significantly dif-
ferent from each other for at least a pair of groups in the
corresponding factors or terms. For Factor A, the p-values
(0.36) is much larger than the cutoff value of 0.05, which
implies no significant difference exists between the two fea-
ture selection techniques (FRT vs. HFS) investigated in this
study. However, the performance of the classification mod-
els based on HFS is slightly better than performance when
feature ranking techniques are used alone.

Multiple comparisons were performed for the three main
factors as well as the two interaction terms AxB and AxC
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for each ranking technique (CS, GR, IG, RFF, RFT, SU and KS)
rank features using training data set SP1
select top 30% features (12 features) from each ranked list
select size k of features using AHS (k=2, 3, 4, and 6)
for each size k of feature subset
for each classifier (NB, MLP, KNN, SVM, and LR)
build classification models on SP1
test the model and collect the performance metric using test
data SP2, SP3, and SP4
end
end
end

Figure 3. HFS experimental procedure

Table 6. Analysis of variance

Source Sum Sq.  d.f. Mean Sq. F  p-value
A 0.005 1 0.005 0.8347  0.361
B 02199 3 0.0733 12.1249 0

C 0.8693 6 0.1449 23.9703 0

AXB 0.0622 3 0.0207 3.4277  0.017
AxC 0.1885 6 0.0314 5.1974 0
BxC 0239 18 0.0133 2.1969  0.003
AXBxC 0.4429 18 0.0246 4.0705 0
Error 47388 784  0.006

Total 6.7655 839

to identify which pair(s) of means significantly differ from
each other in each factor or term. The test results are
shown in Figure 4, Each sub-figure displays graphs with
each group mean represented by a symbol (o) and an in-
terval around the symbol (95% confidence interval). Two
means are significantly different (aw = 0.05) if their inter-
vals are disjoint, and are not significantly different if their
intervals overlap. The following conclusions are made:

1. For Factor A (feature selection technique), FRT
and HFS performed very similar with HFS showing
slightly better performance than FRT. This is consis-
tent with the conclusion obtained from ANOVA test.

2. For Factor B (size of attribute subset), we can group
the four different k sizes into two classes. Classl in-
cludes size 2 and size 3, and Class2 include size 4 and
size 6. Figure 4 (b) shows that the classification mod-
els built with 4 or 6 attributes (Class2) significantly
outperformed the classification models built with 2 or
3 attributes (Classl). The different sizes in the same
class are very similar to each other, implying that the
subset of 4 metrics provides similar performance as the
subset of 6 metrics (i.e., [logy n])

3. For Factor C (ranking techniques), CS performed sig-
nificantly worse than other techniques, and GR is bet-
ter than CS but worse than the others. IG and KS



Table 7. Classification on 42 attributes

Classifier SP2 SP3 SP4
NB 0.8149 0.7963  0.8059
MLP 0.8314 0.8322 0.8309
KNN 0.7849  0.8054  0.7901
SVM 0.6662  0.6519  0.6779
LR 0.8287  0.7989  0.8246

showed the best performances in this study, while RFT,
RFF, and SU demonstrated similar performances.

4. For the interaction terms A xB, there are eight cate-
gories (levels). Figure 4 (d) shows that when using the
two feature selection techniques (FRT and HFS) to se-
lect 4 or 6 attributes, we can obtain better prediction
from the classification models. The 4-attribute sub-
set selected directly by feature rankings provides very
good results.

5. For the interaction terms A x C, there are 14 categories
(levels), which represents the 14 different attribute
subset selection techniques we used in the study (seven
direct rankings plus seven hybrid subset selections).
Figure 4 (e) demonstrates that CS performed poorly
regardless of whether it was used alone or in combi-
nation with the AHS search algorithm. While the GR
ranking technique provided poor prediction when used
alone, its performance improves when combined with
the AHS search algorithm. All the other techniques
showed no significant difference in terms of their per-
formances. However, the classification performances
based on the subsets of attributes selected with IG-FRT
(IG used alone), IG-HFS (IG combined with HFS), and
KS-FRT (KS used alone) methods, were generally bet-
ter than those of others.

Referring to the research question posed earlier in the pa-
per, our results have demonstrated that for the LLTS system
when 4 out of 42 attributes were used to train the classi-
fication models, we obtain the same generalization perfor-
mances as compared to when a larger subset of metrics (i.e.,
six attributes) or when the complete set of attributes (42 at-
tributes) is used for training. Results of the latter are shown
in Table 7.

6 Conclusion

The paper addresses the question of “what is the min-
imum number of software metrics that should be used to
build a software quality prediction model for a given sys-
tem?” A detailed study of seven filter-based feature ranking
techniques and our proposed hybrid feature selection tech-
nique is presented in the context of an empirical software
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Figure 4. Multiple comparisons

engineering study. Software measurement data from four
releases of large telecommunications system is used in our
case study. Software quality prediction models are built us-
ing five different classification algorithms: including naive
Bayes, multilayer perceptron, K -nearest neighbors, support
vector machine, and logistic regression.

The answer to the above stated question is that for the
LLTS system, only 10% of the available software metrics
were sufficient in building a useful software quality predic-
tion model. This implies that only four out of the 42 soft-
ware metrics are considered useful — this result is verified
by a software engineering domain expert with over 20 years
of experience in software quality engineering. Another
conclusion is that the Kolmogorov-Smirnov technique for
feature ranking provided competitive performance as com-
pared to the other approaches. Finally, our proposed hybrid
feature selection technique also performed better when 4
software attributes are selected.

Future work will focus on experimental analysis of other
software project, especially those from other application do-
mains. From a practical point of view, an analysis on which
software metrics stand out as good attributes for defect pre-
diction across multiple projects would be of interest to the
software engineering community.
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