Skip to main content
Article
ESammon: A computationaly enhanced sammon mapping based on data density
Quantitative Health Sciences Publications and Presentations
  • Chanpaul Jin Wang, University of Massachusetts Medical School
  • Hua (Julia) Fang, University of Massachusetts Medical School
  • Honggang Wang, University of Massachusetts - Dartmouth
UMMS Affiliation
Department of Quantitative Health Sciences
Publication Date
2-1-2016
Document Type
Conference Proceeding
Abstract

Sammon mapping is a widely used visualization technique to display complex data from high-to low-dimensional space. However, its extensive computational cost may pose potential computational challenges to big data visualization. This paper proposes a computationally-enhanced Sammon mapping (ESammon) by leveraging the characteristics of spatial data density. Unlike the conventional Sammon, ESammon preserves critical pairwise distances between data points in the process of projection, instead of all distances. Specifically, we integrated the Directed-Acyclic-Graph (DAG) based data density characterization method to select the critical distances. The numerical results demonstrated that our ESammon can achieve comparable projection results as the conventional Sammon mapping while reducing the computational cost from O(N2) to O(N).

Keywords
  • UMCCTS funding,
  • Multi-dimensional scaling (MDS),
  • Sammon mapping,
  • data density
DOI of Published Version
10.1109/ICCNC.2016.7440696
Source

C. J. Wang, H. Fang and H. Wang, "ESammon: A computationaly enhanced sammon mapping based on data density," 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, 2016, pp. 1-5. doi: 10.1109/ICCNC.2016.7440696. Link to article on publisher's website

PubMed ID
27668263
Related Resources

Link to article in PubMed

Citation Information
Chanpaul Jin Wang, Hua (Julia) Fang and Honggang Wang. "ESammon: A computationaly enhanced sammon mapping based on data density" (2016)
Available at: http://works.bepress.com/hua_fang/38/