Skip to main content
Article
DAG-searched and Density-based Initial Centroid Location Method for Fuzzy Clustering of Big Biomedical Data
Quantitative Health Sciences Publications and Presentations
  • Chanpaul Jin Wang, University of Massachusetts Medical School
  • Hua (Julia) Fang, University of Massachusetts Medical School
  • Honggang Wang, University of Massachusetts - Dartmouth
UMMS Affiliation
Department of Quantitative Health Sciences
Publication Date
2-2-2015
Document Type
Conference Proceeding
Abstract

Randomly allocating initial centroids may lead to undesired steady states for fuzzy c-means (FCM) clustering. This paper proposes an alternative method to automatically search initial centroid location based on data density. Specifically, this method auto-searches points located in high-density domains as centroids using directed acycline graph (DAG) based algorithm, and then iteratively fnding the optimal patterns. Compared with random initialization method, our method seems to have the potential to improve FCM accuracy for larger data size with seconds' tradeoff in computational time using published datasets.

Keywords
  • initial centroids,
  • fuzzy clustering,
  • density,
  • directed acycline graph
DOI of Published Version
10.4108/icst.bict.2014.257932
Source
Chanpaul Jin Wang, Hua Fang, and Honggang Wang. 2014. DAG-searched and density-based initial centroid location method for fuzzy clustering of big biomedical data. In Proceedings of the 8th International Conference on Bioinspired Information and Communications Technologies (BICT '14). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 290-293. DOI: 10.4108/icst.bict.2014.257932
Citation Information
Chanpaul Jin Wang, Hua (Julia) Fang and Honggang Wang. "DAG-searched and Density-based Initial Centroid Location Method for Fuzzy Clustering of Big Biomedical Data" (2015)
Available at: http://works.bepress.com/hua_fang/31/