St. Catherine University

From the SelectedWorks of Holman Tse, PhD

May 27, 2022

Is There Cross-linguistic Influence of English /u/ on Toronto Cantonese High Round Vowels?

Holman Tse, St. Catherine University

This work is licensed under a Creative Commons CC_BY-NC-SA International License.

Is There Cross－linguistic Influence of English／u／ on Toronto Cantonese High Round Vowels？

Workshop on Innovations in Cantonese Linguistics（WICL－6）
Online Conference
May 27， 2022
Holman Tse
謝浩明
St．Catherine
UNIVERSITY

hbtse110＠stkate．edu

Heritage Language Variation and Change in Toronto HITP：／／PROJECTS ．CHASS ．UTORONTO．CA／NGN／HLVC

University of Pittsburgh

Introduction

- Linguistic focus on three vowels
- Cantonese $/ \mathrm{y}$ / and $/ \mathrm{u}$ / (henceforth ' y ' and ' u ')
- English /u/ (henceforth 'UW')
- Population focus on second-generation (Gen2) Toronto heritage Cantonese speakers
- Question
- Given widespread English-dominance, does English UW influence Cantonese /y/ vs. /u/ production?

The Two Cantonese Vowels

Cantonese Monophthongs (Zee 1999)

Image from Wikipedia

/y/	vs.	/u/
捲		館
gyun2		gun2
[kyn1]		[kun1]
('roll')		('building')

high front round tense

high back round tense

The Toronto English Vowel

Toronto English Vowel System

Image from Wikipedia

'UW'

goose
[gus]

English has only one high round tense vowel (phonetically fronted), (cf. Boberg, 2011)

The Data

- HLVC (Heritage Language Variation and Change) Project Corpus (Nagy 2011)
- Digital recordings (.wav) of hour-long sociolinguistic interviews (spontaneous speech sample) following Labov's (1984) methods and protocols
- Participants were told that the interviews were to be primarily in Cantonese, but they were allowed to code-switch into English as often as was natural.
- This makes it possible to analyze both English and Cantonese vowels coming from the same individual speakers.
- However, this has not really been done up until this point
 HITP://PROJECTS . CHASS . UTORONTO. CA/NGN/HLVC

Societal Context: Toronto, Canada

http://www.whereig.com/images/cities/toronto-location-map.jpg

Photo by Holman Tse, 2014

- Home to one of the largest concentration of Cantonese speakers in North America
- Cantonese is the most common mother tongue other than English/French reported in the Toronto Census Metro Area (Statistics Canada 2017)
- 260,355 speakers (4.4\% of population)

Previous HLVC Research: Group Comparisons

Photos by Holman Tse, 2014

- Gen1 (1 ${ }^{\text {st }}$ generation)
- Immigrated to Canada as adults and have lived in Canada for $20+$ years
- Generally Cantonese-dominant in an English-dominant region
- Gen2 (2 ${ }^{\text {nd }}$ generation)
- Parents meet criteria for Gen1
- Includes those who grew up in Canada and have lived continuously in Toronto since age 5 or younger.
- Generally English-dominant speakers of Cantonese
- Hong Kong (Homeland)
- Lifelong Hong Kong residents
- Generally Cantonese-dominant in a Cantonese-dominant region

Previous HLVC Research：Group Comparisons

Tse（2019）：
－／y／is the only vowel that showed a significant F1／F2 difference between Gen1 vs．Gen2
－／y／is significantly retracted for Gen2 speakers
－Lack of significant Gen1 vs．Gen2 difference for／u／

zyu1，豬，＇pig＇	
Fronted／y／Sample （canonical）	Retracted／y／sample （English－influenced？）
C2M44A 4－	C2M21B－
gun3，罐，＇can＇	
Fronted／u／Sample （English－influenced？）	Retracted／u／sample （canonical）
C2F24A ${ }^{\text {P）}}$	CXF16A 「o）

Previous Research Focusing on Gen2 Variation

- Tse (In Press) showed
- Within Gen2 group, /y/ retraction AND /u/ fronting greatest among those with lower Cantonese Production Scores (CPS), a proficiency proxy based on relative amount of Cantonese produced in spontaneous speech samples involving code-switching
- Tse (Accepted) showed
- Gen2 speakers have the most variation in Pillai Scores (a measurement of vowel distance)
- $/ \mathrm{y} / \sim / \mathrm{u} /$ may be driven by low functional load in interaction with English dominance

Does this all mean English influence?

- Aforementioned studies argued 'yes', BUT

- Addressed this question indirectly
- Assumption of English influence based on general information about Toronto English phonology
- Actual Toronto English speech from heritage Cantonese speakers not analyzed
- Focused on group-level effects rather than on individual speaker patterns
- Inter-speaker variation in $/ \mathrm{y} / \sim / \mathrm{u} /$ production is clear
- Not clear how Cantonese and English interact with each other in the same acoustic space

Research Questions

- By comparing acoustic measurements of BOTH the Cantonese and English spoken by the same individual speakers, the following questions are addressed:
- Q1) Is English UW produced more similarly to /y/ or /u/ in terms of F2?
- Q2) How does this vary across individual speakers based on Pillai Scores?
- Q3) What does variation suggest about the interaction between UW, /y/, and /u/?

Participants Selected

	$/ \mathrm{y} /$	UW	$/ \mathrm{u} /$
C2F20A	16	11	9
C2F21B	53	z	75
C2F21C	15	17	5
C2F22A	44	8	26
C2F24A	18	58	10
C2F41A	25	10	6
C2M21B	7	11	9
C2M21G	40	3	6
C2M21D	24	10	9
C2M22A	18	6	6
C2M27A	21	15	6
C2M44A	103	29	19
TOTAL	291	175	105

- Tse (In Press) analyzed 12 Gen2 speakers
- Speaker codes used
- C: Cantonese
- 2: Gen2 (grew up in Toronto)
- $M=$ male ($n=6$), $F,=$ female ($n=6$)
- Age at time of recording (20-44)
- A, B, C, D, etc (to distinguish speakers)
- For current study, only speakers with at least 5 tokens of each vowel included
- Two speakers from Tse (In Press) excluded

Participants Selected

	$/ \mathrm{y} /$	UW	$/ \mathrm{u} /$
C2F20A	16	11	9
C2F21C	15	17	5
C2F22A	44	8	26
C2F24A	18	58	10
C2F41A	25	10	6
C2M21B	7	11	9
C2M21D	24	10	9
C2M22A	18	6	6
C2M27A	21	15	6
C2M44A	103	29	19
TOTAL	291	175	105

- F2 measured (in Hertz) for each vowel token
- Words with preceding glides excluded for all three vowels
- Ex: jyu4 ('if') 如, wu4 ('lake') 湖, cute [kjut] (UW) all excluded
- /u/ includes only open syllable, coda /t/, or coda /n/ contexts
- F2 not normalized since focus on individual speakers

Analysis Procedures

- Q1) Is English UW produced more similarly to /y/ or /u/ in terms of F2?
- Regression models run for each individual speaker using Rbrul (Johnson 2009)
- Dependent variable: unnormalized F2 (Hz)
- Independent variable: vowel category (/y/ vs. UW or /u/ vs. UW)
- Q2) How does this vary across individual speakers based on Pillai Scores?
- Vowel production patterns analyzed along with Pillai Scores (Nycz \& HallLew, 2015), which were calculated and presented in Tse (Accepted)

Q1 Results

Speakers	/y/ vs. UW	UW vs. /u/
C2F20A	$* * *$	$* *$
C2F21C	$* * *$	$* * *$
C2F22A	$* * *$	$* * *$
C2F24A	n.s.	$* * *$
C2F41A	n.s.	$* * *$
C2M21B	n.s.	$* * *$
C2M21D	$* * *$	$* * *$
C2M22A	n.s.	$* * *$
C2M27A	$*$	$*$
C2M44A	$* * *$	$* * *$

- Significant differences indicate distinctly produced vowels
- * $(p<0.05)$
- ($p<0.01$
- $p<0.001$
- Non significance indicates overlapping vowel production
- Four speakers have overlapping /y/~UW production (for F2)
- Zero speakers have overlapping UW~/u/ production (for F2)

Q2 Results

Speakers	Pillai Scores	$/ \mathrm{y} / \mathrm{vs}$. UW
C2M27A	0.926	$*$
C2F21C	0.901	$* * *$
C2M44A	0.897	$* * *$
C2M21D	0.875	$* * *$
C2F20A	0.869	$* * *$
C2M21B	0.854	n.s.
C2F22A	0.852	$* * *$
C2F41A	0.747	n.s.
C2F24A	0.705	n.s.
C2M22A	0.565	n.s.

- Pillai Scores based on a continuous scale from 0 to 1
- Higher score indicates more distinct pronunciations of $/ \mathrm{y} /$ vs. /u/
- Lower scores indicate less distinct pronunciations (more merger)
- Lower scores correspond with overlapping /y/ vs. UW production

Speakers with high PSs

Speakers with the lowest PSs

Plots with UW included

Discussion

- Q1) Is English UW produced more similarly to /y/ or /u/in terms of F2?
- UW universally distinct from /u/ for all 10 speakers
- UW is more fronted than /u/ for all 10 speakers
- For some speakers UW overlaps with /y/ while for others it is between /y/ and /u/
- Q2) How does this vary across individual speakers based on Pillai Scores?
- High PS speakers produce three distinct vowels
- Low PS speakers have cross-linguistically merged UW and /y/, while /u/ generally remains distinct.

Discussion

- Q3) What does variation suggest about the interaction between UW, $/ \mathrm{y} /$, and $/ \mathrm{u} /$?
- Since UW is phonetically fronted, English-dominant speakers may perceive more similarity between UW and $/ \mathrm{y} /$ than between UW and $/ \mathrm{u} /$.
- NOTE: Similar findings in Chang et al (2011) for heritage Mandarin speakers
- This could then in turn motivate cross-linguistic merger in production between UW and /y/ while /u/ remains relatively stable.
- Cantonese $/ \mathrm{y} / \sim / \mathrm{u} /$ merger appears to be an epiphenomenal result of $/ \mathrm{y} / \sim \mathrm{UW}$ cross-linguistic merger
- Even among the speakers with the lowest Pillai Scores, /y/ remains phonetically distinct from /u/.
- /u/ still fronts among speakers with the lowest Pillai Scores, but not as much as /y/ retracts

Next Steps

- More speakers from HLVC Corpus to analyze
- Especially important given low functional load and low token frequency (Tse, Accepted)
- Analysis based on very few tokens per speakers
- Lack of minimal pair data from the same individual speakers
- More consideration needed of phonetic context
- Near complementary distribution relationship between /y/ and /u/
- /y/ with preceding coronals and velars
- /u/ with preceding labials and velars
- Toronto English has an allophonic UW distinction with more fronting with preceding coronals (ex: TOOT) than elsewhere (ex: GOOSE)

References

Boberg, C. (2011). Reshaping the Vowel System: An Index of Phonetic Innovation in Canadian English. University of Pennsy/vania Working Papers in Linguistics, 17(2).
Chang, C. B., Yao, Y., Haynes, E. F., \& Rhodes, R. (2011). Production of phonetic and phonological contrast by heritage speakers of Mandarin. The Journal of the Acoustical Society of America, 129(6), 3964-3980. https://doi.org/10.1121/1.3569736

Johnson, D. E. (2009). Getting off the GoldVarb Standard: Introducing Rbrul for Mixed-Effects Variable Rule Analysis. Language and Linguistics Compass, 3(1), 359-383.

Labov, W. (1984). Field methods of the project on linguistic change and variation. In J. Baugh \& J. Sherzer (Eds.), Language in use: Readings in sociolinguistics (pp. 28-53). Englewood Cliffs, NJ: Prentice Hall.

Nagy, N. (2011). A Multilingual Corpus to Explore Variation in Language Contact Situations. Rassegna Italiana Di Linguistica Applicata, 43(1/2), 65-84.
Nycz, J., \& Hall-Lew, L. (2015). Best practices in measuring vowel merger. Proceedings of Meetings on Acoustics, 20(1), 060008.
https://doi.org/10.1121/1.4894063
Statistics Canada. 2017. Focus on Geography Series, 2016 Census. Statistics Canada Catalogue no. 98-404-X2016001. Ottawa, Ontario. Data products, 2016 Census.

Tse, H. (Accepted). Functional Load and Vowel Merger in Toronto Heritage Cantonese. In Rao, R. (Ed.), Phonetics and Phonology of Heritage Languages. Cambridge University Press.

Tse, H. (In Press). What can Cantonese heritage speakers tell us about age of acquisition, linguistic dominance, and sociophonetic variation? In R. Bayley, D. Richard. Preston, \& X. Li (Eds.), Variation in Second and Heritage Languages: Crosslinguistic Perspectives. John Benjamins Publishing Company.

Tse, H. (2019). Vowel shifts in Cantonese? Asia-Pacific Language Variation, 5(1), 67-83. https://doi.org/10.1075/aplv.19001.tse
Zee, E. (1999). Chinese (Hong Kong Cantonese). In Handbook of the International Phonetic Association: A guide to the use of the International Phonetic Alphabet (pp. 58-60). Cambridge University Press.

감사합니다 Дякую Grazie molto Спасибо多謝 gratsiə namuor:ə

HLVC Cantonese RAs:
Abigail Chan
Karen Chan
Tiffany Chung
Rachel Coulter
Radu Craioveanu
Joyce Fok
Rita Pang
Andrew Peters
Mario So Gao
Josephine Tong
Sarah Truong
Ka-man Wong
Olivia Yu
Minyi Zhu

Other Acknowledgments
Scott Kiesling
Shelome Gooden
Alan Juffs
Jevon Heath
Melinda Fricke
Jeffrey Lamontagne
Claude Mauk
Dominic Yu
Patrick Chew

Other Research Support:

(\%) University of Pittsburgh

UNIVERSITY OF
TORONTO

Conseil de recherches en sciences humaines du Canada

Questions?

- Holman Tse
- Email: hbtse110@stkate.edu
- Slides will be available at: https://holmantse.github.io/
- HLVC is also source of data for WICL-6 Session 3A presentations:
- Leung et al., "Lazy Pronunciation in Toronto Heritage Cantonese"
- Li et al., "Tonal Aspects of Cantonese-English code-switching ..."
- New URL:
- HTTPS://NGN.ARTSCI.UTORONTO.CA/HLVC/O 0 HOME. PHP

