
University of Massachusetts Amherst

From the SelectedWorks of Hava Siegelmann

August 16, 1999

Computational Complexity for Continuous Time
Dynamics
Hava Siegelmann, University of Massachusetts - Amherst
Asa Ben-Hur
Shmuel Fishman

Available at: https://works.bepress.com/hava_siegelmann/11/

http://www.umass.edu
https://works.bepress.com/hava_siegelmann/
https://works.bepress.com/hava_siegelmann/11/

VOLUME 83, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 16 AUGUST 1999

Computational Complexity for Continuous Time Dynamics

Hava T. Siegelmann and Asa Ben-Hur
Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel

Shmuel Fishman
Department of Physics, Technion, Haifa 32000, Israel

(Received 22 March 1999)

Dissipative flows model a large variety of physical systems. In this Letter the evolution of such
systems is interpreted as a process of computation; the attractor of the dynamics represents the output.
A framework for an algorithmic analysis of dissipative flows is presented, enabling the comparison
of the performance of discrete and continuous time analog computation models. A simple algorithm
for finding the maximum of n numbers is analyzed, and shown to be highly efficient. The notion of
tractable (polynomial) computation in the Turing model is conjectured to correspond to computation
with tractable (analytically solvable) dynamical systems having polynomial complexity.

PACS numbers: 05.45.–a, 89.70.+c, 89.80.+h

The computation of a digital computer, and its mathe-
matical abstraction, the Turing machine is described by
a map on a discrete configuration space. In recent years
scientists have developed new approaches to computation,
some of them based on continuous time analog systems.
The most promising are neuromorphic systems [1], mod-
els of human memory [2], and experimentally realizable
quantum computers [3]. Although continuous time sys-
tems are widespread in experimental realizations, no the-
ory exists for their algorithmic analysis. The standard
theory of computation and computational complexity [4]
deals with computation in discrete time and in a discrete
configuration space, and is inadequate for the description
of such systems. This Letter describes an attempt to fill
this gap. Our model of a computer is based on dissipa-
tive dynamical systems (DDS), characterized by flow to
attractors, which are a natural choice for the output of a
computation. This makes our theory realizable by small-
scale classical physical systems (since there dissipation is
usually not negligible) [5]. We define a measure of com-
putational complexity which reflects the convergence time
of a physical implementation of the continuous flow, en-
abling a comparison of the efficiency of continuous time
algorithms with discrete ones. On the conceptual level,
the framework introduced here strengthens the connection
between the theory of computational complexity and the
field of dynamical systems.

Turing universality of dynamical systems is a funda-
mental issue; see [6] and a recent book [7]. A system of
ordinary differential equations (ODEs) which simulates a
Turing machine was constructed in [8]. Such construc-
tions retain the discrete nature of the simulated map, in
that they follow its computation step by step by a continu-
ous equation. In the present Letter, on the other hand, we
consider continuous systems as is, and interpret their dy-
namics as a process of computation.

The view of the process of computation as a flow to
an attractor has been taken by a number of researchers.

The Hopfield neural network is a dynamical system
which evolves to attractors which are interpreted as
memories; the network is also used to solve optimization
problems [2]. Brockett introduced a set of ODEs that
perform various tasks such as sorting and solving linear
programming problems [9]. Numerous other applications
can be found in [10]. An analytically solvable ODE
for the linear programming problem was proposed by
Faybusovich [11]. Our theory is, to some extent, a
continuation of their work, in that it provides a framework
for the complexity analysis of continuous time algorithms.

Our model is restricted to exponentially convergent
autonomous dissipative ODEs

dx
dt

� F�x� , (1)

for x [�n and F, an n-dimensional vector field, where
n depends on the input. For a given problem, F takes
the same mathematical form, and only the length of the
various objects in it (vectors, tensors, etc.) depends on
the size of the instance, corresponding to “uniformity”
in computer science [12]. We discuss only systems with
fixed point attractors, and the term attractor will be used
to denote an attracting fixed point. We study only au-
tonomous systems since for these the time parameter is
not arbitrary (contrary to nonautonmous ones): under any
nonlinear transformation of the time parameter the sys-
tem is no longer autonomous, as will be explained in what
follows. The restricted class of exponentially convergent
vector fields describes the “typical” convergence scenario
for dynamical systems [13]. Structural stability of expo-
nentially convergent flows is an important property for
analog computers. As a further justification we argue
that exponential convergence is a prerequisite for efficient
computation, provided the computation requires reaching
the asymptotic regime, as is usually the case. Asymptoti-
cally, jx�t� 2 x�j � e2t�tch [see Eq. (5)]. When a tra-
jectory is close to its attractor, in a time tch ln2 a digit
of the attractor is computed. Thus the computation of L

0031-9007�99�83(7)�1463(4)$15.00 © 1999 The American Physical Society 1463

VOLUME 83, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 16 AUGUST 1999

digits requires a time which scales as tchL. This is in
contrast with polynomially convergent vector fields: Sup-
pose that jx�t� 2 x�j � t2b for some b . 0, then in or-
der to compute x� with L significant digits, we need to
have jx�t� 2 x�j , 22L, or t . 2L�b , for an exponential
time complexity.

Last, we concentrate on ODEs with a formal solution,
since for these, complexity is readily analyzed, and it
is easy to provide criteria for halting a computation.
Dynamical systems with an analytical solution are an
exception. But despite their scarcity, we argue later that
a subclass of analytically solvable DDS’s which converge
exponentially to fixed point attractors are a counterpart
for the classical complexity class P. This then suggests
a correspondence between tractability in the realm of
dynamical systems and tractability in the Turing model.

The input of a DDS can be modeled in various
ways. One possible choice is the initial condition. This
is appropriate when the aim of the computation is to
decide to which attractor out of many possible ones the
system flows. This approach was pursued in [14]. The
main problem within this approach is related to initial
conditions in the vicinity of basin boundaries. The flow in
the vicinity of the boundary is slow, resulting in very long
computation times. In the present Letter, on the other
hand, the parameters on which the vector field depends
are the input, and the initial condition is a function of
the input, chosen in the correct basin, and far from basin
boundaries to obtain an efficient computation. For the
gradient vector field equation (7), designed to find the
maximum of n numbers, the n numbers ci constitute
the input, and the initial condition given by (11) is
untypically simple. More generally, when dealing with
the problem of optimizing some cost function E�x�, e.g.,
by a gradient flow �x � gradE�x�, an instance of the
problem is specified by the parameters of E�x�, i.e., by
the parameters of the vector field.

The vector x�t� represents the state of the correspond-
ing physical system at time t. The time parameter is
thus time as measured in the laboratory, and has a well-
defined meaning. Therefore we suggest it as a measure
of the time complexity of a computation. However, for
nonautonomous ODEs that are not directly associated
with physical systems, the time parameter seems to be
arbitrary: if the time variable t of a nonautonomous vec-
tor field is replaced by s � g�t�, where g�t� is strictly
monotonic we obtain a nonautonomous system dx

ds �
F�x,t�

�g�g21�s�� � Fs�x, s�. In this way arbitrary speed-up can
be achieved in principle. However, the time transformed
system Fs�x, s� is a new system. Only once it is con-
structed does its time parameter take on the role of physi-
cal time, and is no longer arbitrary. Therefore speed-up
is a relevant concept only within the bounds of physical
realizability. We stress the distinction between linear and
nonlinear transformations of the time parameter: a linear
transformation is merely a change of the time unit; a non-

linear transformation effectively changes the system itself.
Therefore we suggest autonomous systems as representing
the intrinsic complexity of the class of systems that can be
obtained from them by changing the time parameter.

The evolution of a DDS reaches an attractor only in the
infinite time limit. Therefore for any finite time we can
compute it only to some finite precision. This is sufficient
since for combinatorial problems with integer or rational
inputs, the set of fixed points (the possible solutions)
will be distributed on a grid of some finite precision. A
computation will be halted when the attractor is computed
with enough precision to infer a solution to the associated
problem by rounding to the nearest grid point.

The phase space evolution of a trajectory may be rather
complicated, and a major problem is to decide when a
point approached by the trajectory is indeed the attractor
of the dynamics, and not a saddle point. An attractor
is certified by its attracting region which is a subset of
the trapping set of the attractor in which the distance
from the attractor is monotonically decreasing in time.
The convergence time to an attracting region U, tc�U� is
the time it takes for a trajectory starting from the initial
condition x0 to enter U.

When the computation has reached the attracting region
of a fixed point, and is also within the precision required
for solving the problem, ep , the computation can be
halted. We thus define the halting region of a DDS
with attracting region U and required precision ep as
H � U > B�x�, ep�, where B�x�, ep� is a ball of radius
ep around the attractor x�. The computation time is the
convergence time to the halting region, tc�H�, given by

tc�H� � max�tc�ep�, tc�U�� , (2)

where tc�ep� is the convergence time to B�x�, ep�.
In general, we cannot calculate tc�H� for a DDS

algorithm. Thus we resort to halting by a bound on the
computation time of all instances of size L:

T �L� � max
jPj�L

tc���H�P���� , (3)

where P denotes the input, and L � jPj is its size in
bits. The definition of the input size depends on the
input space considered. The bit size (used here) is the
suitable measure for unbounded integers. See [15] for
more details.

Time complexity is a dimensionless number, whereas
T �L� depends on the time units of the system at hand. To
make it dimensionless we express it in terms of the time
scale for convergence to the fixed point. Let x��P� be
the attracting fixed point of �x � F�x� on input P. In the
vicinity of x� the linear approximation �dx � DFjx�dx
holds, where dx � x 2 x�. Let li be the real part of the
ith eigenvalue of DFjx� . We define:

l � min
i

jlij . (4)

1464

VOLUME 83, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 16 AUGUST 1999

l determines the rate of convergence to an attractor,
since in its vicinity jx�t� 2 x�j � e2lt , leading to the
definition of the characteristic time

tch �
1
l

. (5)

We finally define the time complexity of a DDS algorithm:

T 0�L� �
T �L�

tch�P0�
, (6)

where P0 is a fixed instance of the problem. This is a
valid definition of complexity since it is invariant under
linear transformations of the time parameter.

We demonstrate our approach with a simple DDS al-
gorithm for the “MAX” problem, which is the problem
of finding the maximum of n numbers. Let the num-
bers be c1, . . . , cn, and define the linear cost function
E�x� � cTx. The MAX problem can be formulated as
a constrained optimization problem: find the maximum
of E�x� subject to the constraints

Pn
i�1 xi � 1, xi $ 0.

This is recognized as the linear programming problem on
the n 2 1 dimensional simplex Dn21 � �x [�n: xi $

0,
Pn

i�1 xi � 1	. We use the vector field

Fi �

√
ci 2

nX
j�1

xjcj

!
xi , (7)

which is the gradient of the function E on Dn21 relative
to a Riemannian metric which enforces the positivity con-
straints [10]. This flow is a special case of the Faybuso-
vich vector field [11], which we analyze elsewhere [16].

We denote by e1, . . . , en the standard basis of �n.
The fixed points of F are the vertices of the simplex
e1, . . . , en. We first assume a unique maximum. Also
suppose that c1 . c2 and c2 $ cj , j � 3, . . . , n. Under
this assumption the flow converges exponentially to e1 as
witnessed by the analytical solution

xi�t� �
ecitxi�0�Pn

j�1 ecjtxj�0�
, (8)

where xi�0� are the components of the initial condition.
We note that the analytical solution does not help in
determining which of the fixed points is the attractor
of the system: the solution to the specific instance of
the problem is required for that. Thus the analytical
solution is only formal, and one has to follow the
dynamics of the vector field (7) to find the maximum.
However, the formal solution is useful in obtaining tight
bounds on T �L�.

A linearization of F shows that the time scale for
convergence to the attractor e1 is

tch �
1

c1 2 c2
. (9)

By solving for t in the equation kx�t� 2 e1k , e, an
upper bound on the time to reach an e vicinity of the
vertex e1 is found [10]:

tc�e� # tchjln�x1�0�e2�j . (10)

The divergence as x1�0� tends to zero is due to initial
conditions close to the basin boundary. To minimize the

contribution of flow near basin boundaries we choose as
an initial condition the symmetric vector

e �
1
n

�1, . . . , 1�T . (11)

The coordinates of the possible solutions (vertices of
the simplex) are integer, and therefore ep � 1�2. Using
Eq. (10) we obtain that the convergence time to the
ep-vicinity of e1 is bounded by

tc�ep� , tch ln4n . (12)

Next we show a bound on the convergence time to the
attracting region. The attracting region of the problem is
the region in which �xi , 0 for i . 1. By the positivity of
the xi’s, this is satisfied if

Pn
j�1 cjxj . ci , i � 2, . . . , n.

Inserting the analytical solution yields a bound on tc�U�:

tc�U� # tch�lntchc2 1 lnn� , (13)

The maximum of (12) and (13) gives the bound

tc���H�c���� # tch�lntchc2 1 ln4n� . (14)

If integer inputs are considered then tch # 1. The
size of the input in bits is L �

Pn
i�1�1 1 log2�ci 1 1��.

Expressing the bound on tc���H�c���� in terms of L:

tc���H�c���� � O�lnL� . (15)

A sublinear (logarithmic) complexity arises because the
model is inherently parallel: the variables of a DDS
algorithm can be considered as processing units, and
their number in this algorithm increases with the size
of the input. When the inputs are bounded integers the
complexity becomes O�logn�, similar to the complexity
obtained in models of parallel computation in the Turing
framework. The analysis of the MAX problem was
presented as an illustration. In [16] we analyze the
maximum network flow problem and the general linear
programming problem.

In the following, we no longer assume integer inputs
(see [15]). Suppose that c1 � c2, then the maximum is
not unique, and arbitrarily small perturbations of such
an instance have different attractors as the solution. The
bound on tc�U� also shows that in such a case it takes a
long time for the system to distinguish between attractors
with close values of the cost function, since when c2
is close to c1 we have a large time scale, tch. Thus
problems which are near to problems with a nonunique
maximizer are “hard.” Instances of a problem which
have a nonunique solution are termed “ill-posed” in the
numerical analysis literature [17] and the difficulty of
problems which are close to ill-posed (“ill-conditioned”)
is expressed in “condition number theorems” which state
that the inverse of the distance of an instance from the set
of ill-posed problems is equal to its condition number. In
our context we define tch as the condition number and
indeed find that it is the inverse of the distance of an
instance from the set of problems in which c1 � c2 [15].
A more general condition number theorem is also argued

1465

VOLUME 83, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 16 AUGUST 1999

[15]. Ill-conditioned problems for models where the input
is the parameters, are reminiscent of problems with the
initial condition near the basin boundary in models where
the initial condition is the input.

In the following, we compare complexity in our model
with the classical theory. The complexity class P in clas-
sical computational complexity is the class of problems
for which there exists an algorithm which runs in poly-
nomial time on a Turing machine. Its counterpart in our
framework is called CP (continuous P), and contains the
set of problems which have a DDS algorithm with a poly-
nomial number of variables and polynomial time com-
plexity. Note that since the variables play the role of
processing units, their number needs to be limited as well.
In [16] we present a DDS algorithm for the maximum
network flow problem which has polynomial time com-
plexity. In addition we define the class CLOG (continu-
ous log) of problems that have a DDS algorithm with
a polynomial number of variables and logarithmic time
complexity. We have shown that MAX is in CLOG. We
note that for a comparison with the classical theory to be
meaningful it is necessary to impose constraints on the
complexity of the vector field. Otherwise, the computa-
tional power of the model can be attributed to the com-
plexity of the vector field. We assume in the following
that the vector field is in the parallel complexity class NC
[12], of computations in polylogarithmic (polynomial of
log) time with a polynomial number of processors; NC is
the complexity class just below P.

We argue that CP � P. For the inclusion P # CP
we rely on the claim that the P-complete [18] problem
of maximum network flow is in CP [16]. If we use
the Turing reductions from a P problem to maximum
network flow we have in fact shown that all efficient
Turing computations can be performed polynomially in
our framework. However, relying on Turing reductions
which are external to our model might be considered
unsatisfactory. As of yet we have no argument that
CP # P. However, we believe that a polynomial time
simulation of the ODE with some numerical integration
scheme should be possible because of the convergence to
fixed points.

In this Letter we concentrated on analytically tractable
dynamical systems, a property which helped us in com-
puting bounds on the convergence time to the attracting
region, and find initial conditions far from basin bound-
aries. For a large class of systems without an analytical
solution one can resort to probabilistic verification of an
attractor: when it is suspected that a fixed point is ap-
proached, a number of trajectories are initiated in an e

ball around the trajectory. If this ball shrinks, then with
high probability the fixed point is an attractor. If the ball
has expanded in some direction, then the fixed point is a

saddle. This yields a Co-RP type of complexity class [12]
which is applicable to gradient flows, for example [14].

Only fixed point attractors were considered here. In
[14] computation of chaotic attractors is discussed. Such
attractors are found to be computable efficiently by means
of nondeterminism. The inherent difference between
fixed points and chaotic attractors may shed light on the P
vs NP question which is a main open problem in computer
science.

The authors would like to thank E. Sontag, K. Ko,
C. Moore, and J. Crutchfield for helpful discussions. This
work was supported in part by the U.S.-Israel Binational
Science Foundation (BSF), by the Israeli Ministry of Arts
and Sciences, by the Fund for Promotion of Research at
the Technion and by the Minerva Center for Nonlinear
Physics of Complex Systems.

[1] C. Mead, Analog VLSI and Neural Systems (Addison-
Wesley, Reading, Massachusetts, 1989).

[2] J. J. Hopfield and D. W. Tank, Biol. Cybernet. 52, 141
(1985).

[3] C. P. Williams, in Proceedings of Quantum Computing
and Quantum Communications: First NASA International
Conference, QCQC’98, Springer Lecture Notes in Com-
puter Science Vol. 1509 (Springer, Berlin, 1998).

[4] The term computational complexity in computer science
denotes the scaling of the resources needed to solve a
problem with its size [12].

[5] E. Ott, Chaos in Dynamical Systems (Cambridge Univer-
sity Press, Cambridge, 1993).

[6] C. Moore, Phys. Rev. Lett. 64, 2354 (1990).
[7] H. T. Siegelmann, Neural Networks and Analog Computa-

tion: Beyond the Turing Limit (Birkhauser, Boston, Mass-
achusetts, 1999), and references therein.

[8] M. S. Branicky, in Proceedings of the IEEE Workshop on
Physics and Computation (Dallas, Texas, 1994), pp. 265–
274.

[9] R. W. Brockett, Linear Algebr. Appl. 146, 79 (1991).
[10] U. Helmke and J. B. Moore, Optimization and Dynamical

Systems (Springer-Verlag, London, 1994).
[11] L. Faybusovich, IMA J. Math. Control Inf. 8, 135 (1991).
[12] C. Papadimitriou, Computational Complexity (Addison-

Wesley, Reading, Massachusetts, 1995).
[13] B. R. Hunt, T. Sauer, and J. A. Yorke, Bull. Am. Math.

Soc. 27, 217 (1992).
[14] H. T. Siegelmann and S. Fishman, Physica (Amsterdam)

120D, 214 (1998).
[15] H. T. Siegelmann, A. Ben-Hur, and S. Fishman (to be

published).
[16] A. Ben-Hur, H. T. Siegelmann, and S. Fishman (to be

published).
[17] S. Smale, SIAM Rev. 32, 211 (1990).
[18] A problem in P is called P-complete if any problem in P

can be reduced to it [12].

1466

	University of Massachusetts Amherst
	From the SelectedWorks of Hava Siegelmann
	August 16, 1999

	Computational Complexity for Continuous Time Dynamics
	tmpkWJ1hK.pdf

