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A Comparison of Graphical Methods for Assessing the Proportional Hazards 

Assumption in the Cox Model 
 

Inger Persson, AstraZeneca R&D, Södertälje, SWEDEN 

 

Harry Khamis, Statistical Consulting Center, Wright State University, Dayton, Ohio  45435, USA 

 

ABSTRACT  Six graphical procedures to check the assumption of proportional hazards for the Cox model are 

described and compared.  A new way of comparing the graphical procedures using a Kolmogorov-Smirnov like 

maximum deviation criterion for rejection is derived for each procedure.  The procedures are evaluated in a 

simulation study under proportional hazards and five different forms of nonproportional hazards:  (1) increasing 

hazards, (2) decreasing hazards, (3) crossing hazards, (4) diverging hazards, and (5) nonmonotonic hazards.  The 

procedures are compared in the two-sample case corresponding to two groups with different hazard functions.  

None of the procedures under consideration require partitioning of the survival time axis.  Results indicate that 

the Arjas plot, a plot of estimated cumulative hazard versus number of failures, is superior to the other 

procedures under almost every form of nonproportional hazards, especially crossing and nonmonotonic hazards.  

For increasing hazards, the smoothed plot of the ratio of log cumulative baseline hazard rates versus time or the 

smoothed plot of scaled Schoenfeld residuals versus time perform the best.  The Andersen plot performs very 

poorly for increasing, decreasing, and diverging hazards.       

 

 

1. INTRODUCTION 

  

The relation between the distribution of event times 

and time-invariant covariates or risk factors z (z is a 

p   1 vector) can be described in terms of a model 

according to Cox (1972), in which the hazard rate 

at time t for an individual is 

 

λ(t,z) = λ0(t)e
β'z

,  (1.1) 

 

where λ0(t) is the baseline hazard rate, an unknown 

(arbitrary) function giving the hazard rate for the 

standard set of conditions z = 0, and β is a p 1 

vector of unknown parameters.  The factor e
β'z

 

describes the hazard for an individual with 

covariates z relative to the hazard at standard 

conditions  z = 0.   

  

The ratio of the hazard functions for two 

individuals with covariate values z and z
*
 is 

)('

*

*

)|(

)|( zze
zt

zt  




, an expression that does not 

depend on t.  Thus, the Cox model in (1.1) is only 

valid for data consistent with the assumption of 

proportional hazards.   

  

Since the validity of the Cox regression analysis 

based on the model in (1.1) relies on the 

assumption of proportionality of the hazard rates of 

individuals with distinct covariate values, it is 

important to be able to reliably determine if the 

assumption is plausible.  This can be done 

graphically or numerically.  A partial review of 

numerous graphical and analytical methods for 

checking the adequacy of Cox models was given by 

Lin and Wei (1991).  Some authors recommend 

using numerical tests for such determinations (e.g., 

Hosmer and Lemeshow, 1999, p. 207).  However, 

others recommend graphical procedures arguing 

that the proportional hazards assumption only 

approximates the correct model for a covariate, and 

that any formal statistical test, based on a large 

enough sample size, will reject the null hypothesis 

of proportionality (Klein and Moeschberger, 1997, 

p. 354).  A comprehensive comparative study of 

numerical procedures is given elsewhere (Persson, 

2002).  This paper focuses on the effectiveness of 

graphical procedures.  In section 2, six graphical 

methods for determining the plausibility of the 

proportional hazards assumption are described.  In 

section 3, the results of a comparative simulation 

study are presented.  A discussion is given in 

section 4, an example is presented in section 5, and 

conclusions are given in section 6.          

 

2. GRAPHICAL METHODS COMPARED 

 

Hess (1995) describes eight graphical methods for 

detecting violations of the proportional hazards 
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assumption and demonstrated each on three 

authentic data sets.  Five of those methods are 

described in sections 2.1 – 2.5 below.  The methods 

not included in this paper are (1) methods that 

require a partitioning of the time axis, which 

introduces a certain degree of arbitrariness into the 

procedure, leading to different conclusions 

depending on the partition used, or (2) methods that 

do not allow a comparison with other methods 

through the use of a maximum deviation criterion 

proposed in this paper.  Section 2.6 describes an 

additional graphical method not included in the 

article by Hess (1995), the lesser used Arjas plot 

(Arjas, 1988).  These six graphical methods are 

compared through a simulation study.   

 Comparing graphical methods can be 

somewhat arbitrary since there are no clear 

guidelines for how to interpret the plots.  The 

conclusions are highly dependent on the 

subjectivity of the viewer.  However, to make it 

possible to compare the results of the different 

methods, a criterion for rejection is derived for each 

method individually using measures described in 

sections 2.1 – 2.6.  In each case, a Kolmogorov-

Smirnov like maximum deviation criterion is used.  

See Lin et al. (1993) for an illustration of this 

approach.     

 

2.1 Method 1:  Plot of Survival Curves Based 

on the Cox Model and Kaplan-Meier Estimates for 

Each Group 

 The survival function, )(tS , is related to 

the cumulative hazards function, )(tH , as follows: 

 
  ztH tHetS 'exp

0

)( )(exp)(  

 ztS 'exp

0 )(  ,  (2.1.1) 

 

where )(0 tH  is the cumulative baseline hazard 

and )(0 tS  is the baseline survival function.  

Breslow (1974) gives an estimate for the 

cumulative baseline hazard based on the Cox 

proportional hazards model, 


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
tt
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tH
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
ˆ0 )(ˆ ,     (2.1.2) 

where δi is the event indicator for the i
th

 individual 

and Ri is the risk set at time ti, i.e., the set of 

individuals still under study at a time just prior to ti.  

Kalbfleish and Prentice (1980) and Link (1984) 

provide additional estimates for the cumulative 

baseline hazard.  The baseline survival function can 

be written 
)(

0
0)(

tH
etS


 .  Thus, an estimate of 

the baseline survival function based on the Cox 

model is given by  

)(ˆ

0
0)(ˆ tH

etS


 .  (2.1.3)   

 It is possible to assess violations of the 

assumption of proportional hazards by comparing 

survival estimates based on the Cox model with 

estimates computed independently of the model, 

such as the Kaplan-Meier product-limit estimate for 

each group (Kaplan and Meier, 1958), defined by 
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  (2.1.4) 

 

where di is the observed number of events at time ti 

and Yi is the number at risk at time ti (i.e., the 

number of individuals who are alive at time ti or 

experience the event of interest at time ti).  See 

Kleinbaum (1996), Chapter 3 for a discussion of the 

quantitative comparison of the Kaplan-Meier and 

Cox regression estimates.   

 Clear departures of the two estimates 

provide evidence against the assumption of 

proportional hazards.  Figure 2.1.1 shows an 

example of plots of survival curves based on the 

Cox model along with Kaplan-Meier estimates for 

each of two groups of patients.   

 

 

  
 

Figure 2.1.1 Survival curves based on the Cox 

model along withKaplan-Meier estimates for each 

of two groups of patients 
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 The maximum absolute difference 

between the curves is used to establish possible 

deviations from the assumption of proportional 

hazards.  This criterion is used in the Kolmogorov-

Smirnov test for goodness-of-fit of two cumulative 

distribution functions (see, e.g., Sokal and Rohlf, 

1995).  The larger the absolute difference between 

the curves, the stronger the indication of violations 

of the proportional hazards assumption.  Let 

Diffmax1 denote the maximum absolute difference 

between the curves, then the hazards are 

proportional if Diffmax1 = 0.  The larger the value of 

Diffmax1, the stronger the evidence of 

nonproportionality.  Figure 2.1.2 shows the 

distribution of 10,000 generated Diffmax1 values 

under proportional hazards.   

 

   
 

Figure 2.1.2 10,000 Diffmax1 values generated under 

proportional hazards 

 

 

 This distribution can be used to establish a 

criterion for determining that the proportional 

hazards assumption is not plausible.  We use the 

95
th

 percentile as such a criterion, namely, that 

value of x for which  

P[Diffmax1 > x] = 0.05.  So, to check the assumption 

of proportional hazards, Diffmax1 is calculated and it 

is concluded that the hazards are not proportional if 

Diffmax1 exceeds x.        

 

2.2 Method 2:  Plot of Cumulative Baseline 

Hazards in Different Groups  

 Another method to graphically check the 

assumption of proportional hazards is based on the 

estimated cumulative baseline hazard rate, namely, 

the Andersen (1982) plot.   

 Let )(ˆ tH g  be the estimated cumulative 

baseline hazard rate in stratum g, g = 1, 2, …, K.  

Plot, for all t, )(ˆ tH g  for g = 2, …, K.  If the 

proportional hazards assumption is true, then these 

curves should be straight lines through the origin.  

Figure 2.2.1 shows an example of a plot of the 

cumulative baseline hazards in two groups of 

patients.   

 

 

 
 

Figure 2.2.1 Estimated cumulative baseline hazard 

rate in group 2 versus group 1 

 

 To determine if this curve follows a 

straight line through the origin, estimation of a 

linear regression with no intercept of )(ˆ
2 tH  on 

)(ˆ
1 tH  is proposed.  Let Diffmax2 denote the 

maximum absolute difference between )(ˆ
2 tH  and 

the estimated (fitted) values from the regression.  

Figure 2.2.2 shows the distribution of 10,000 

generated Diffmax2 values under proportional 

hazards.   

 

 

 
 

Figure 2.2.2 10,000 Diffmax2 values generated under 

proportional hazards 

 

 The assumption of proportional hazards is 

concluded to be implausible if the calculated value 

of Diffmax2 exceeds the 95
th

 percentile of this 

distribution.   
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2.3 Method 3:  Plot of the Difference of the 

Log Cumulative Baseline Hazard Versus Time 

  

Schumacher (1990) suggested plotting )(ˆ t  versus 

t, where 

 

   )(ˆlog)(ˆlog)(ˆ 01 tHtHt  . (2.3.1) 

 

 Under proportional hazards this plot is 

constant over t, centered around the estimated log 

hazard ratio ̂ .  Figure 2.3.1 shows an example of 

a plot of the difference of the log cumulative 

baseline hazard versus time. 

 

 

 
 

Figure 2.3.1 Plot of )(ˆ t  versus time  

 

 

 Let Diffmax3 denote the maximum absolute 

difference between )(ˆ t  and ̂ .  Figure 2.3.2 

shows the distribution of 10,000 generated Diffmax3 

values under proportional hazards.   

 

 

 

 
 

Figure 2.3.2 10,000 Diffmax3 values generated under 

proportional hazards 

 

 

 The hazards are concluded to be 

nonproportional if the calculated value of Diffmax3 

exceeds the 95
th

 percentile of this distribution.   

   

2.4 Method 4:  Smoothed Plot of the Ratio of 

Log Cumulative Baseline Hazard Rates Versus 

Time 

 Smoothing helps describe the pattern of 

dependence, thus making it easier to check the 

constancy of )(ˆ t  when plotting it against t as 

described in subsection 2.3.  The choice of 

smoothing technique is usually not very important 

as long as the smoother (1) is sensitive to local 

rather than global features of the data and (2) has an 

appropriate number of degrees of freedom (Hastie 

and Tibshirani, 1990).  For example, LOWESS 

(locally-weighted scatter plot smoothing) employs 

iterated weighted least squares with a robustness 

feature that identifies and down-weights outliers in 

successive smoothings.  Figure 2.4.1 shows an 

example of a smoothed plot of the difference of the 

log cumulative baseline hazard versus time using 

LOWESS.   

 

 

 
 

Figure 2.4.1 Smoothed plot of )(ˆ t versus time 

 

 

 Let Diffmax4 denote the maximum absolute 

difference between the smoothed values of )(ˆ t  

and ̂ .  Figure 2.4.2 shows the distribution of 

10,000 generated Diffmax4 values under proportional 

hazards.   
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Figure 2.4.2 10,000 Diffmax4 values generated under 

proportional hazards 

 

 The hazards are concluded to be 

nonproportional if the calculated value of Diffmax4 

exceeds the 95
th

 percentile of this distribution.   

 

2.5 Method 5:  Smoothed Plot of Scaled 

Schoenfeld Residuals Versus Time 

   Schoenfeld (1980) defined partial residuals 

for the Cox model that do not depend on time, so 

that the j
th

 residual can be plotted against tj to detect 

violations of the proportional hazards assumption, 

where j indexes individuals (j = 1, 2, …, n).  The 

Schoenfeld residuals are defined as 

 

ri(β) = z(i) – M(β,ti),      (2.5.1) 

 

where z(i) is the covariate vector of the subject with 

an event at time ti, where i indexes event times (i = 

1, 2, …, D), and M(β,ti) is the conditional weighted 

mean of the covariate vector at time ti as described 

in Persson (2002), section 2.2.  Grambsch and 

Therneau (1994) describe a scale adjustment for 

Schoenfeld’s residuals, 

 

  1
* )ˆ(ˆˆˆ)ˆ(ˆ



  Vdrr ii ,   (2.5.2) 

 

where ̂  is the maximum partial likelihood 

estimate under proportional hazards, )ˆ(ˆ V  is the 

estimated variance of ̂ , and d is the total number 

of events where individuals from both groups 

remain at risk.  For a binary covariate coded 0 or 1, 

a plot of 
*

ir  versus ti yields two horizontal bands of 

residuals.  If the proportional hazards assumption 

holds, then the residuals center around ̂ .  

Smoothing improves the interpretability of the 

residual plots, so LOWESS is applied.  Figure 2.5.1 

shows an example of a smoothed plot of the scaled 

Schoenfeld residuals versus time. 

 

 

 

 
Figure 2.5.1 Smoothed plot of scaled Schoenfeld 

residuals versus time 

 

 

      Let Diffmax5 denote the maximum absolute 

difference between the smoothed residuals and ̂ .  

Figure 2.5.2 shows the distribution of 10,000 

generated Diffmax5 values under proportional 

hazards.   

 

 

 

 

 
 

Figure 2.5.2 10,000 Diffmax5 values generated under 

proportional hazards  

 

 The hazards are concluded to be 

nonproportional if the calculated value of Diffmax5 

exceeds the 95
th

 percentile of this distribution.   

  

2.6 Method 6:  Plot of the Estimated 

Cumulative Hazard Versus Number of Failures  

 Arjas (1988) suggested a plot of the 

estimated cumulative hazard versus the number of 

failures in each stratum (Arjas plot).  See Section 
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VII.3.4 of Andersen et al. (1993) for the 

development, of which the following is a brief 

summary.  Consider the differences 

 




t

hih

ih khudNuptN
0 )(

0 ,...,1),(),()(  , 

 

where 



hih

ih tNtN
)(

)()( , N  is the process 

counting the observed failures, and 

),...,,,...,( 0

1

0

1

0

1

0

10  kppp   is the true 

parameter vector.  These differences are (local) 

martingales.  Therefore, plots of 

 

 




h
mX

hih

hi khNmudNup

)(

0 )(

,...,1),(,...,1),()ˆ,( 

 

 

versus m, where )(,...,1,)( h

h

m NmX   are the 

ordered jump times in stratum h, should be 

approximately straight lines with unit slope.  

 This plot is a Total Time on Test plot for 

the residuals ir̂ .  Tests for the proportional hazards 

model based on these residuals were briefly 

discussed by Arjas (1988) and Arjas and Haara 

(1988).    

 Figure 2.6.1 shows an example of an Arjas 

plot of estimated cumulative hazard versus number 

of failures in each stratum (here the strata are the 

two groups).   

 

 

 
 

Figure 2.6.1 Arjas plot 

 

 

If the hazards are proportional, then these 

curves should be approximately linear with slope 

close to one.  However, even under proportional 

hazards the curves may differ from the 45 degree 

line, as seen in Figure 2.6.1, but they are still fairly 

linear.  When the hazards are not proportional, then 

the curves are roughly as close to the 45 degree line 

as under proportionality, but the curves are not 

linear.  To determine if these curves differ 

nonlinearly from the 45 degree line, one can 

estimate, for each stratum, a linear regression of 


j

ij tH )(  on 
j

ij TN )( , where )( ij tH  is the 

cumulative hazard for the j
th

 individual in the 

sample at time it , i = 1, …, D.  Let Diffmax6 denote 

the maximum absolute difference between 


j

ij tH )( and the estimated (fitted) values from 

the regression.  Figure 2.6.2 shows the distribution 

of 10,000 generated Diffmax6 values under 

proportional hazards.   

 

 

 

 
 

Figure 2.6.2 10,000 Diffmax6 values 

generated under proportional hazards 

 

 

 The hazards are concluded to be 

nonproportional if the calculated value of Diffmax6 

exceeds the 95
th

 percentile of this distribution.   

 

3. SIMULATION STUDY  
  

The six graphical methods described in subsections 

2.1 – 2.6 are evaluated under proportional hazards 

and five different forms of nonproportional 

hazards:  (1) increasing hazards, (2) decreasing 

hazards,  

(3) crossing hazards, (4) diverging hazards, and (5) 

nonmonotonic hazards.  The methods are compared 

in the two-sample case corresponding to two groups 

with different hazard functions.  Equal sample sizes 
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of 30, 50, and 100 observations per group are used 

along with average censoring rates of 10, 25, 50, 

and 70 percent.  Random (noninformative) 

censoring using an exponential censoring 

distribution is incorporated.  The smallest sample 

size is not used at the highest censoring rate 

because of the small number (18) of events that 

would result.  The number of repetitions used in 

each simulation is 10,000. 

 Random samples of survival times, Ts, are 

generated from the Weibull distribution in all cases 

except for the nonmonotonic hazards, where the 

lognormal distribution, having probability density 

function 
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 is used.  The hazard of the Weibull distribution is 

defined as h(t) = αγ(αt)
γ-1

, where α is the scale 

parameter and γ is the shape parameter.  Details 

about parameter values are described in each case 

below.  Censoring times, Tc, are generated from the 

exponential distribution with hazard function h(t) = 

λ, where the value of the parameter λ is adjusted to 

achieve the desired censoring rates.  The time on 

study, T, is defined as T = min(Ts, Tc), where Ts 

and Tc are independent.     

 The criteria described in subsections 2.1 – 

2.6 are used for rejection of the null hypothesis of 

proportional hazards for a test procedure that is 

adjusted for the appropriate sample size and 

censoring rate.  A significance level of 5% is used.  

The results from the simulations are presented in 

the form of a plot and a numerical summary (table) 

presenting the proportion of times that the criterion, 

Diffmaxk, k = 1, 2, …, 6, exceeds the 95
th

 percentile 

of the corresponding reference distribution, thus 

indicating “strong” evidence that the hazards are 

not proportional. 

 In subsections 3.1 – 3.6 below, the 

parameter settings for the survival distributions and 

the figures are given as follows. 

 

 

 

 

 

 

 

 

 

Sub

sec. 

Hazards Survival 

Dist. 

Group 1 Group 2 Fig 

3.1 Proportional Weibull(α,γ) (α,γ)=(1,1) (α,γ)=(2,1) 3.1.1 

3.2 Increasing Weibull(α,γ) (α,γ)=(2,1.5) (α,γ)=(2,2) 3.2.1 

3.3 Decreasing Weibull(α,γ) (α,γ)=(2,.3) (α,γ)=(2,.5) 3.3.1 

3.4 Crossing Weibull(α,γ) (α,γ)=(2,1.5) (α,γ)=(5,1) 3.4.1 

3.5 Diverging Weibull(α,γ) (α,γ)= 
(1,.95) 

(α,γ)= 
(1,1.5) 

3.5.1 

3.6 Nonmon-

otonic 

Log-

normal(μ,σ) 

(μ,σ)=(.3,1) (μ,σ)=(1,1) 3.6.1 

 

 

3.1 Proportional Hazards           

  

The proportion of times that Diffmaxk exceeds the 

95
th

 percentile of the reference distribution is given 

for each censoring rate, sample size, and k = 1, 2, 

…, 6 in Figure 3.1.2.  The numerical values can be 

found in Appendix Table A1. 
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Figure 3.1.1 Constant hazards. 
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    Figure 3.1.2 Proportional hazards 

 

 In order to compare the percentages, one 

can calculate the standard deviation of the 

proportion under the proportional hazards model:  

0031.0
5000

)95.0)(05.0()1(





rep

p
n

pp


.  The standard deviation of the difference between 

two independent proportions is 0044.0diff , 

so 013.03 diff  can be used as an informal 

benchmark for a real difference between 

significance levels.  However, due to the 

multiplicity of comparisons, this benchmark must 

be used cautiously.     

 

 All of the graphical procedures behave as 

expected, with the percentage of rejections of 

proportional hazards close to the significance level 

of 5%.  In fact, all percentages fall between 0.045 

and 0.055.   

 

3.2 Increasing Hazards 

 The proportion of times that Diffmaxk 

exceeds the 95
th

 percentile of the reference 

distribution is given for each censoring rate, sample 

size, and k = 1, 2, …, 6 in Figure 3.2.2.  The 

numerical values can be found in Appendix Table 

A2. 
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Figure 3.2.1 Increasing hazards. 
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    Figure 3.2.2 Increasing hazards 

 

In order to compare the percentages, one can 

calculate the maximum standard deviation of the 

difference between two proportions: 

01.0
5000

)5.0(
2

2
max diff , and 

03.03 max diff  serves as a conservative 

benchmark signifying a real difference.  The same 

benchmark can be used in subsections 3.3 – 3.6.  

Again, because of the multiplicity of comparisons 

this benchmark must be used cautiously.     

 

Methods 2 and 6 perform relatively poorly at the 

10% and 25% censoring rates, while method 1 

performs poorly at the 50% and 70% censoring 

rates.   

 

3.3 Decreasing Hazards 

 

The proportion of times that Diffmaxk exceeds the 

95
th

 percentile of the reference distribution is given 

for each censoring rate, sample size, and k = 1, 2, 

…, 6 in Figure 3.3.2.  The numerical values can be 

found in Appendix Table A3. 

 

 

    
Figure 3.3.1 Decreasing hazards. 
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    Figure 3.3.2 Decreasing hazards 

 

Method 2 is consistently inferior.  Methods 1 and 3 

perform well at the 10% and 25% censoring rates.  

Method 6 performs well at the 50% and 70% 

censoring rates. 

 

3.4 Crossing hazards 

The proportion of times that Diffmaxk exceeds the 

95
th

 percentile of the reference distribution is given 

for each censoring rate, sample size, and k = 1, 2, 

…, 6 in Figure 3.4.2.  The numerical values can be 

found in Appendix Table A4. 
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Figure 3.4.1 Crossing hazards. 
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    Figure 3.4.2 Crossing hazards 

 

Method 6 is consistently superior.  Method 4 also 

performs consistently well.     

 

3.5 Diverging Hazards 

The proportion of times that Diffmaxk exceeds the 

95
th

 percentile of the reference distribution is given 

for each censoring rate, sample size, and k = 1, 2, 

…, 6 in Figure 3.5.2.  The numerical values can be 

found in Appendix Table A5. 
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Figure 3.5.1 Diverging hazards. 

 

 

 



 34 

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,0

P
ro

p
o

rt
io

n
 o

f 
re

je
c
ti
o

n
s

10% 25% 50% 70%cens.

30 50 100 1005030 1005030 10050n

1. Cox & Kapl. 2. Andersen 3. Diff log cum baseline haz

4. Smooth diff. 5. Smooth scaled Schoenfeld 6. Arjas
 

 

    Figure 3.5.2 Diverging hazards 

 

 Method 2 performs consistently poorly, 

especially at the 10% and 25% censoring rates.   

 

3.6 Nonmonotonic Hazards 

 The proportion of rejections is shown for 

each censoring rate, sample size, and k = 1, 2, …, 6 

in Figure 3.6.2.  The numerical values can be found 

in Appendix Table A.6. 
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Figure 3.6.1 Nonmonotonic hazards. 
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    Figure 3.6.2 Nonmonotonic hazards 

 

 Method 6 is consistently superior.  Method 

2 also performs consistently well.    

 

4. DISCUSSION 

  

In each of the five forms of nonproportional 

hazards, the proportion of rejections generally 

increases with sample size and decreases with 

censoring rate.  The conclusions from the 

simulations is that Method 6, the Arjas plot, finds 

nonproportionality more often than the other 

methods, especially  

(1) for crossing and nonmonotonic hazards and (2) 

at the higher censoring rates for decreasing and 

diverging hazards.  For decreasing hazards, Method 

1, the Cox and Kaplan-Meier survival versus time 

plot, is superior at the low censoring rates.  The 

Andersen plot, Method 2, performs poorly in all 

situations except for nonmonotonic hazards where 

it performs well.   

 These results are consistent with a viewing 

of the plots derived from data sets.  Figure 4.1 

shows examples of Method 6, which performed 

well for crossing and nonmonotonic hazards.  The 

sample size is 100 and the censoring rate is 10% for 

both plots.   

 

 

         

 
 

 a) increasing hazards  b) crossing hazards 

 

Figure 4.1 Arjas plot 
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 It is fairly easy to see that at least one of 

the curves differs nonlinearly from the 45 degree 

line.  Under crossing hazards the distance between 

the curves and the 45 degree line is also larger than 

it is under proportional hazards (see Figure 2.6.1).  

Even though the Arjas plot did not perform as well 

under increasing hazards, it is still easy to see that 

the curves differ nonlinearly from the 45 degree 

line (Figure 4.1a; compare to Figure 2.6.1).   

 The other method that performed well in 

the simulations, especially at low censoring rates, 

except for crossing and nonmonotonic hazards, is 

Method 1.  Figure 4.2 shows an example of that 

plot under decreasing hazards, sample size 100 and 

10% censoring rate.  A departure of the two 

estimates can be seen in the figure (compare to 

Figure 2.1.1). 

 

 

     

 
 

Figure 4.2 Survival curves based on the Cox model 

along with Kaplan-Meier estimates for each of two 

groups of patients 

 

 Figure 4.3 shows an example of the 

Andersen plot, the method that performed worse 

than the others in almost every situation, under 

diverging hazards, with sample size 100 and 10% 

censoring rate.  It is difficult to conclude that the 

line does not follow a straight line through the 

origin (compare to Figure 2.2.1).   

 

 

 
 

 

Figure 4.3 Estimated cumulative baseline hazard 

rate in group 2 versus group 1 

 

 The Andersen plots look similar to this 

under any of the nonproportional hazards cases; 

only in a few cases would it be possible to detect a 

deviation from a straight line with the naked eye.   

 

5. APPLICATION 

  

A multicenter study of the disease CML, chronic 

myeloid leukemia, was initiated in 1984 at the 

University Hospital in Uppsala, Sweden.  CML is a 

cancer of the blood cells where the patient has a 

high number of white blood cells, granulocytes, in 

bone marrow and blood.  The treatment of this 

disease aims to reduce the number of white blood 

cells.  “Cell-restraining drugs” which reduce the 

production of these blood cells are used in 

treatment.  The two treatments, busulphane and 

hydroxyurea, were widely used all over the world at 

the time of this study.  In previous studies, these 

treatments were found to be equally effective at 

prolonging the lifetimes of the patients (Hehlmann 

et al., 1993 and Alan et al., 1995).   

 Patients were recruited from all hospitals 

in Sweden.  All patients older than five years and 

willing to participate, diagnosed with CML from 

January 1, 1984 until December 31, 1988, were 

included in the study.  The patients were 

randomized to one of the two treatments at the date 

of diagnosis.  All patients younger than 

approximately 45 years of age with a compatible 

donor (only brothers or sisters) were offered bone 

marrow transplantation.  The last patient was 

included in the study in May 1988, and all patients 

were followed until February 1998.  A total of 63 

patients were included in the study, 26 of which 

received bone marrow transplantation.  Figure 5.1 

shows the Kaplan-Meier survival curves for 

patients who received a transplant (transpl 1) and 

those who did not receive a transplant (transpl 0).   
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Kaplan-Meier survival estimates, by transpl
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Figure 5.1 Kaplan-Meier survival for transplanted 

and not transplanted patients. 

 

 The censoring rate for these data is 16%.  

The transplantation covariate (1 = Yes, 0 = No) was 

believed to be time-dependent, so that the 

proportional hazards assumption for the Cox model 

was under question.  Figure 5.2 shows the hazard 

rates for the two groups.   

 
Figure 5.2 Hazard rates for transplanted and not 

transplanted patients. 

 

 The hazard rates cross at early times and 

then diverge.  From the results of section 3, the 

Arjas plot (Method 6) should be an effective 

graphical method to assess the proportional hazards 

assumption.   

 Figures 5.3 – 5.8 show the six different 

graphical methods described in sections 2.1 – 2.6 

applied to the CML data with transplantation as a 

single binary covariate.   

 

 

          
 

Figure 5.3 Method 1, Survival curves based on the 

Cox model along with Kaplan-Meier estimates for 

transplanted and not transplanted patients 

 

 
 

Figure 5.4 Method 2, Estimated cumulative 

baseline hazard rate for transplanted patients 

versus not transplanted patients (Andersen plot) 

 

 
 

Figure 5.5 Method 3, Plot of )(ˆ t versus time  
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Figure 5.6 Method 4, Smoothed plot of )(ˆ t versus 

time 

 

 

 

 
 

Figure 5.7 Method 5, Smoothed plot of scaled 

Schoenfeld residuals versus time 

 

 

 

 

 
 

Figure 5.8 Method 6, the Arjas plot 

 

General conclusions from these plots are given as 

follows. 

 

Method 1.  

 

There is a clear difference between the two 

estimates, especially for transplanted patients 

(compare to Figure 2.1.1), which signals a violation 

of the proportional hazards assumption.   

 

Method 2.  

 

A deviation from linearity can be detected in the 

Andersen plot (compare to Figure 2.2.1). 

 

Method 3.  

 

This plot is not constant over time, as would be the 

case if the hazards were proportional (compare to 

Figure 2.3.1). 

 

Method 4.  

 

The smoothing helps the analyst to determine that 

the plot is not constant over time (compare to 

Figure 2.4.1). 

 

Method 5.  

 

The residuals do not tend to center around ̂  

(compare to Figure 2.5.1).   

 

Method 6.  

 

Both curves cross the 45 degree line and differ 

nonlinearly from it, especially the curve for the 

transplanted patients (compare to Figure 2.6.1).   

 

  

 

 

 

CONCLUSION 

  

Assessing graphs for the purpose of determining the 

severity of model assumption violations can be 

difficult because of the lack of objectivity involved.  

To the untrained eye, several of the plots in Figures 

2.1.1 – 2.6.1 may appear to signal a violation of the 

proportional hazards assumption (e.g., Figures 2.2.1 

and 2.4.1) even though they were generated from 

models having proportional hazards.   

  

By using a Kolmogorov-Smirnov like maximum 

deviation criterion upon which to base comparisons 

of six different graphical procedures, this 

simulation study shows that the Arjas plot is 

generally the most effective at identifying 

nonproportional hazards, especially for (1) crossing 

and nonmonotonic hazards and (2) decreasing and 

diverging hazards where the censoring rate is high.  

It is interesting to note that the effectiveness of the 

Arjas plot at identifying nonproportional hazards 

remains relatively constant across the censoring 

rates while for most all of the other methods the 
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proportion of rejections tends to decrease with 

censoring rate.   

  

When the proportion of rejections is averaged over 

sample sizes and censoring rates, Method 2 

performs the worst under increasing, decreasing, 

and diverging hazards while Method 6 performs the 

best under crossing and nonmonotonic hazards.  

The average rejection rates are given as follows: 

     

Method 

Hazards       1       2       3       4        5         6  

------------------------------------------------------------- 

Increasing   .18   .08    .16     .20    .20      .12 

Decreasing  .39   .02    .35     .21    .26      .37 

Crossing       .21   .17   .14     .33    .12      .56 

Diverging    .71 .13   .79      .83    .65      .87 

Nonmono-   .11    .27   .08     .12     .13      .41 

tonic 

 

Method 6, the Arjas plot, has one of the top two 

average rejection rates for four of the five forms of 

nonproportional hazards.  For increasing hazards, 

where Method 6 has the fifth highest average 

rejection rate, Methods 4 or 5 would be 

recommended.   

  

The maximum absolute deviation criterion used in 

this study is consistent with the practical useage of 

plots to determine if model assumptions are 

plausible.  That is, when one visually analyzes a 

plot, one is searching for the deviation between the 

observed plot and the plot one expects to see under 

the model assumption.  This study merely 

formalizes this process. 

  

It is recommended that in general the Arjas plot 

(Method 6) be used as the preferred graphical 

procedure for checking the proportional hazards 

assumption if the form of the nonproportional 

hazards is anything but increasing.  For increasing 

hazards, Methods 4 and 5 are superior.             

  

Generally, it is recommended that the proportional 

hazards assumption always be checked in the Cox 

model, and that while a plot such as the Arjas plot 

is a helpful tool, it should not be the only basis 

upon which to make a decision regarding the 

plausibility of the proportional hazards assumption.   
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APPENDICES 

 

Table A.1. Proportion of rejections for constant hazards. 

          Censoring 

 10% 25% 50% 70% 

  Sample size in each group  

Test statistic 30 50 100 30 50 100 30 50 100 50 100 

1.Cox and Kaplan-

Meier Survival  

vs. time 

.049 .048 .049 .048 .048 .051 .049 .050 .051 .053 .050 

2. Cumulative 

Baseline Hazard 

(Andersen plot) 

.045 .048 .052 .053 .051 .047 .047 .051 .048 .051 .051 

3. Difference of log 

Cum. Baseline 

Hazard vs. Time
 

.049 .053 .049 .049 .054 .053 .050 .053 .050 .053 .049 

4. Smoothed Diff. of 

log Cum. Base-line 

Haz. vs. Time
 

.053 .050 .051 .049 .052 .050 .050 .048 .049 .047 .048 

5. Smoothed scaled 

Schoenfeld residuals 

vs. Time 

.048 .049 .045 .050 .050 .050 .052 .055 .048 .051 .047 

6. Arjas plot of Cum. 

Haz. vs. number of 

failures 

.050 .051 .049 .051 .051 .049 .049 .049 .050 .050 .050 

 

 

 

 

Table A.2. Proportion of rejections for increasing hazards 

          Censoring 

 10% 25% 50% 70% 

  Sample size in each group  

Test statistic 30 50 100 30 50 100 30 50 100 50 100 

1.Cox and Kaplan-

Meier Survival  

vs. time 

.207 .296 .511 .159 .221 .420 .032 .029 .018 .038 .019 

2. Cumulative 

Baseline Hazard 

(Andersen plot) 

.029 .021 .008 .052 .036 .018 .101 .100 .101 .184 .214 

3. Difference of log 

Cum. Baseline 

Hazard vs. Time
 

.138 .185 .274 .110 .169 .274 .077 .116 .195 .073 .127 

4. Smoothed Diff. of 

log Cum. Base-line 

Haz. Vs. Time
 

.133 .224 .390 .118 .201 .365 .079 .139 .270 .072 .157 

5. Smoothed scaled 

Schoenfeld residuals 

vs. Time 

.210 .296 .492 .180 .243 .369 .076 .113 .156 .042 .050 

6. Arjas plot of Cum. 

Haz. vs. number of 

failures 

.066 .081 .124 .079 .097 .158 .088 .112 .203 .124 .190 
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Table A.3. Proportion of rejections for decreasing hazards 

          Censoring 

 10% 25% 50% 70% 

  Sample size in each group  

Test statistic 30 50 100 30 50 100 30 50 100 50 100 

1.Cox and Kaplan-

Meier Survival  

vs. time 

.424 .634 .915 .302 .485 .832 .105 .171 .289 .054 .067 

2. Cumulative 

Baseline Hazard 

(Andersen plot) 

.020 .011 .004 .021 .011 .006 .024 .023 .024 .031 .040 

3. Difference of log 

Cum. Baseline 

Hazard vs. Time
 

.348 .477 .683 .264 .409 .607 .122 .237 .428 .078 .212 

4. Smoothed Diff. of 

log Cum. Base-line 

Haz. vs. Time
 

.175 .285 .553 .129 .205 .414 .066 .107 .179 .062 .087 

5. Smoothed scaled 

Schoenfeld residuals 

vs. Time 

.204 .313 .596 .210 .310 .481 .094 .168 .251 .099 .158 

6. Arjas plot of Cum. 

Haz. vs. number of 

failures 

.198 .298 .578 .216 .322 .559 .217 .326 .561 .334 .509 

 

 

 

 

 

Table A.4. Proportion of rejections for crossing hazards 

          Censoring 

 10% 25% 50% 70% 

  Sample size in each group  

Test statistic 30 50 100 30 50 100 30 50 100 50 100 

1.Cox and Kaplan-

Meier Survival  

vs. time 

.159 .296 .601 .127 .216 .484 .069 .094 .136 .068 .083 

2. Cumulative 

Baseline Hazard 

(Andersen plot) 

.141 .183 .214 .166 .188 .232 .133 .170 .215 .104 .136 

3. Difference of log 

Cum. Baseline 

Hazard vs. Time
 

.108 .176 .345 .080 .147 .294 .062 .071 .181 .061 .066 

4. Smoothed Diff. of 

log Cum. Base-line 

Haz. vs. Time
 

.239 .374 .657 .217 .333 .602 .163 .231 .418 .146 .216 

5. Smoothed scaled 

Schoenfeld residuals 

vs. Time 

.052 .148 .369 .040 .090 .196 .049 .056 .089 .112 .121 

6. Arjas plot of Cum. 

Haz. vs. number of 

failures 

.322 .546 .884 .330 .557 .878 .309 .492 .809 .424 .662 
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Table A.5. Proportion of rejections for diverging hazards 

          Censoring 

 10% 25% 50% 70% 

  Sample size in each group  

Test statistic 30 50 100 30 50 100 30 50 100 50 100 

1.Cox and Kaplan-

Meier Survival  

vs. time 

.916 .993 1.00 .803 .967 1.00 .263 .427 .745 .270 .408 

2. Cumulative 

Baseline Hazard 

(Andersen plot) 

.038 .030 .017 .077 .055 .039 .145 .163 .206 .247 .360 

3. Difference of log 

Cum. Baseline 

Hazard vs. Time
 

.858 .960 .998 .772 .936 .994 .419 .755 .967 .256 .764 

4. Smoothed Diff. of 

log Cum. Base-line 

Haz. vs. Time
 

.839 .969 1.00 .774 .945 .999 .490 .806 .986 .420 .863 

5. Smoothed scaled 

Schoenfeld residuals 

vs. Time 

.916 .993 1.00 .803 .967 1.00 .263 .427 .745 .270 .408 

6. Arjas plot of Cum. 

Haz. vs. number of 

failures 

.038 .030 .017 .077 .055 .039 .145 .163 .206 .247 .360 

 

 

Table A.6. Proportion of rejections for nonmonotonic hazards 

          Censoring 

 10% 25% 50% 70% 

  Sample size in each group  

Test statistic 30 50 100 30 50 100 30 50 100 50 100 

1.Cox and Kaplan-

Meier Survival  

vs. time 

.091 .138 .274 .086 .119 .223 .047 .061 .073 .048 .051 

2. Cumulative 

Baseline Hazard 

(Andersen plot) 

.217 .260 .306 .236 .252 .286 .234 .257 .308 .273 .313 

3. Difference of log 

Cum. Baseline 

Hazard vs. Time
 

.061 .089 .151 .046 .080 .132 .037 .050 .094 .035 .057 

4. Smoothed Diff. of 

log Cum. Base-line 

Haz. vs. Time
 

.076 .128 .259 .066 .117 .235 .053 .082 .165 .057 .103 

5. Smoothed scaled 

Schoenfeld residuals 

vs. Time 

.100 .177 .336 .092 .146 .239 .056 .074 .107 .069 .071 

6. Arjas plot of Cum. 

Haz. vs. number of 

failures 

.303 .375 .545 .311 .394 .567 .296 .375 .545 .360 .481 
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