Skip to main content
Article
OSIRIS-REx Contamination Control Strategy and Implementation
Space Science Reviews (2018)
  • J. P. Dworkin, Goddard Space Flight Center
  • L. A. Adelman, Goddard Space Flight Center
  • T. M. Ajluni, Goddard Space Flight Center
  • A. V. Andronikov
  • J. S. Aponte, Goddard Space Flight Center
  • A. E. Bartels, Goddard Space Flight Center
  • E. Beshore, University of Arizona
  • E. B. Bierhaus, Lockheed Martin Space Systems
  • J. R. Brucato, INAF
  • B. H. Bryan, Lockheed Martin Space Systems
  • A. S. Burton
  • M. P. Callahan, Boise State University
  • S. L. Castro-Wallace
  • B. C. Clark, Space Science Institute
  • S. J. Clemett, Jacobs Engineering Group
  • H. C. Connolly, Rowan University
  • W. E. Cutlip, Goddard Space Flight Center
  • S. M. Daly, Kennedy Space Center
  • V. E. Elliott, Goddard Space Flight Center
  • J. E. Elsila, Goddard Space Flight Center
  • H. L. Enos, University of Arizona
  • D. F. Everett, Goddard Space Flight Center
  • I. A. Franchi, Open University
  • D. P. Glavin, Goddard Space Flight Center
  • H. V. Graham, Goddard Space Flight Center
  • J. E. Hendershot, Goddard Space Flight Center
  • J. W. Harris, Lockheed Martin Space Systems
  • S. L. Hill, Jacobs Engineering Group
  • A. R. Hildebrand, University of Calgary
  • G. O. Jayne, Goddard Space Flight Center
  • R. W. Jenkens, Goddard Space Flight Center
  • K. S. Johnson, Lockheed Martin Space Systems
  • J. S. Kirsch, Jacobs Engineering Group
  • D. S. Lauretta, University of Arizona
  • A. S. Lewis, Goddard Space Flight Center
  • J. J. Loiacono, Goddard Space Flight Center
  • C. C. Lorentson, Goddard Space Flight Center
  • J. R. Marshall, Search for extraterrestrial intelligence
  • M. G. Martin, Goddard Space Flight Center
  • L. L. Matthias, Kennedy Space Center
  • H. L. McLain, Goddard Space Flight Center
  • S. R. Messenger, Washington University in St. Louis
  • R. G. Mink, Goddard Space Flight Center
  • J. L. Moore, Lockheed Martin Space Systems
  • K. Nakamura-Messenger
  • J. A. Nuth, Goddard Space Flight Center
  • C. V. Owens, Kennedy Space Center
  • C. L. Parish, Lockheed Martin Space Systems
  • B. D. Perkins, Kennedy Space Center
Abstract
OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space.
This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.
Keywords
  • OSIRIS-REx,
  • Bennu,
  • Asteroid,
  • Sample Return,
  • · Contamination
Publication Date
February 1, 2018
DOI
10.1007/s11214-017-0439-4
Citation Information
J. P. Dworkin, L. A. Adelman, T. M. Ajluni, A. V. Andronikov, et al.. "OSIRIS-REx Contamination Control Strategy and Implementation" Space Science Reviews Vol. 214 Iss. 1 (2018) p. 19
Available at: http://works.bepress.com/harold-connolly/28/