Three Proofs of Apollonius theorem by H C Rajpoot

Harish Chandra Rajpoot, HCR

Proofs of Apollonius Theorem

Mr Harish Chandra Rajpoot

M.M.M. University of Technology, Gorakhpur-273010 (UP), India

11/11/2016

Here, we are interested to prove Apollonius Theorem by three different methods 1 . using Trigonometry and 2. using Pythagoras Theorem. Apollonius theorem basically correlates lengths of all three sides \& one median in a triangle.

Apollonius Theorem: In any triangle, the sum of squares of any two sides is equal to the sum of half the square of third side and twice the square of corresponding median i.e. if a, b, c are three sides BC, AC and AB respectively $\& m$ is the length of median in a triangle $\triangle A B C$ (As shown in the fig-1) then

$$
b^{2}+c^{2}=\frac{a^{2}}{2}+2 m^{2}
$$

Fig-1: $\triangle A B C$ having sides $a, b, c \& a$ median of length m

Proof-1 (Using Trigonometry): Consider a triangle $\triangle A B C$ having sides $B C, A C$ and $A B$ of lengths $a, b \& c$ respectively and the median $A D$ of length m. (as shown in the fig-2)

Now, applying Cosine rule in $\triangle A B D$ (See fig-2)

$$
\begin{aligned}
\cos B & =\frac{A B^{2}+B D^{2}-A D^{2}}{2(A B)(B D)} \\
\cos B & =\frac{c^{2}+\left(\frac{a}{2}\right)^{2}-m^{2}}{2(c)\left(\frac{a}{2}\right)} \\
a c \cos B & =c^{2}+\frac{a^{2}}{4}-m^{2}
\end{aligned}
$$

Fig-2: $\ln \triangle A B C, B D=C D=a / 2 \& A D=m$

Again, applying Cosine rule in $\triangle A C D$

$$
\begin{align*}
\cos C & =\frac{A C^{2}+C D^{2}-A D^{2}}{2(A C)(C D)} \\
\cos C & =\frac{b^{2}+\left(\frac{a}{2}\right)^{2}-m^{2}}{2(b)\left(\frac{a}{2}\right)} \\
a b \cos C & =b^{2}+\frac{a^{2}}{4}-m^{2} \tag{2}
\end{align*}
$$

Adding (1) \& (2), we get

$$
a c \cos B+a b \cos C=c^{2}+\frac{a^{2}}{4}-m^{2}+b^{2}+\frac{a^{2}}{4}-m^{2}
$$

$$
a(b \cos C+c \cos B)=\frac{a^{2}}{2}+b^{2}+c^{2}-2 m^{2}
$$

Setting $b=K \sin B \& c=K \sin C$ from Sine rule in $\triangle A B C$,

$$
\begin{aligned}
& a(K \sin B \cos C+K \sin C \cos B)=\frac{a^{2}}{2}+b^{2}+c^{2}-2 m^{2} \\
& a K(\sin B \cos C+\sin C \cos B)=\frac{a^{2}}{2}+b^{2}+c^{2}-2 m^{2} \\
& a K \sin (B+C)=\frac{a^{2}}{2}+b^{2}+c^{2}-2 m^{2} \\
& a K \sin (\pi-A)=\frac{a^{2}}{2}+b^{2}+c^{2}-2 m^{2} \quad(\text { since }, A+B+C=\pi) \\
& a K \sin A=\frac{a^{2}}{2}+b^{2}+c^{2}-2 m^{2} \\
& a \cdot a=\frac{a^{2}}{2}+b^{2}+c^{2}-2 m^{2} \quad(\text { from Sine rule, } a=K \sin A) \\
& a^{2}=\frac{a^{2}}{2}+b^{2}+c^{2}-2 m^{2} \\
& b^{2}+c^{2}=\frac{a^{2}}{2}+2 m^{2}
\end{aligned}
$$

Proof-2 (Using Trigonometry): Consider a triangle $\triangle A B C$ having sides BC, AC and AB of lengths $a, b \& c$ respectively and the median AD of length m. Let $\angle B A D=\alpha, \angle C A D=\beta \& \angle A D B=\theta$ (as shown in the fig-3)

Applying sine rule in $\triangle A B D$ (See fig-3)

$$
\begin{array}{r}
\frac{\sin \alpha}{a / 2}=\frac{\sin \theta}{c} \\
\sin \theta=\frac{2 c}{a} \sin \alpha \tag{1}
\end{array}
$$

Applying sine rule in $\triangle A C D$

Fig-3: $\ln \triangle A B C, \angle B A D=\alpha, \angle C A D=\beta \& \angle A D B=\theta$

$$
\begin{array}{r}
\frac{\sin \beta}{a / 2}=\frac{\sin (\pi-\theta)}{b} \\
\sin \theta=\frac{2 b}{a} \sin \beta \quad \ldots \ldots \ldots \tag{2}
\end{array}
$$

Equating values of $\sin \theta$ from (1) \& (2), we get

$$
\begin{array}{r}
\frac{2 c}{a} \sin \alpha=\frac{2 b}{a} \sin \beta \\
\sin \beta=\frac{c}{b} \sin \alpha \quad \ldots \ldots \ldots \tag{3}
\end{array}
$$

Applying cosine rule in $\triangle A B D$ (See above fig-3)

$$
\begin{equation*}
\cos \alpha=\frac{m^{2}+c^{2}-\left(\frac{a}{2}\right)^{2}}{2 m c}=\frac{4 m^{2}+4 c^{2}-a^{2}}{8 m c} \tag{4}
\end{equation*}
$$

Applying cosine rule in $\triangle A C D$

$$
\begin{equation*}
\cos \beta=\frac{m^{2}+b^{2}-\left(\frac{a}{2}\right)^{2}}{2 m b}=\frac{4 m^{2}+4 b^{2}-a^{2}}{8 m b} \tag{5}
\end{equation*}
$$

Applying cosine rule in $\triangle A B C$

$$
\begin{gathered}
\cos (\alpha+\beta)=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos \alpha \cos \beta-\sin \alpha \sin \beta=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{gathered}
$$

Setting the values of $\sin \beta, \cos \alpha \& \cos \beta$ from (3), (4) \& (5) respectively as follows

$$
\begin{aligned}
& \left(\frac{4 m^{2}+4 c^{2}-a^{2}}{8 m c}\right)\left(\frac{4 m^{2}+4 b^{2}-a^{2}}{8 m b}\right)-\sin \alpha\left(\frac{c}{b} \sin \alpha\right)=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \frac{\left(4 m^{2}+4 c^{2}-a^{2}\right)\left(4 m^{2}+4 b^{2}-a^{2}\right)}{64 m^{2} b c}-\frac{c}{b} \sin ^{2} \alpha=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \frac{\left(4 m^{2}-a^{2}+4 c^{2}\right)\left(4 m^{2}-a^{2}+4 b^{2}\right)}{64 m^{2} b c}-\frac{c}{b}\left(1-\cos ^{2} \alpha\right)-\frac{b^{2}+c^{2}-a^{2}}{2 b c}=0 \\
& \frac{\left(4 m^{2}-a^{2}\right)^{2}+4\left(b^{2}+c^{2}\right)\left(4 m^{2}-a^{2}\right)+16 b^{2} c^{2}}{64 m^{2} b c}-\frac{c}{b}\left(1-\left(\frac{4 m^{2}+4 c^{2}-a^{2}}{8 m c}\right)^{2}\right)-\frac{b^{2}+c^{2}-a^{2}}{2 b c}=0 \\
& \frac{\left(4 m^{2}-a^{2}\right)^{2}+4\left(b^{2}+c^{2}\right)\left(4 m^{2}-a^{2}\right)+16 b^{2} c^{2}}{64 m^{2} b c}-\frac{c}{b}\left(\frac{64 m^{2} c^{2}-\left(4 m^{2}-a^{2}\right)^{2}-16 c^{4}-8 c^{2}\left(4 m^{2}-a^{2}\right)}{64 m^{2} c^{2}}\right) \\
& -\frac{b^{2}+c^{2}-a^{2}}{2 b c}=0 \\
& \frac{\left(4 m^{2}-a^{2}\right)^{2}+4\left(b^{2}+c^{2}\right)\left(4 m^{2}-a^{2}\right)+16 b^{2} c^{2}-64 m^{2} c^{2}+\left(4 m^{2}-a^{2}\right)^{2}+16 c^{4}+8 c^{2}\left(4 m^{2}-a^{2}\right)}{64 m^{2} b c} \\
& -\frac{b^{2}+c^{2}-a^{2}}{2 b c}=0 \\
& \frac{2\left(4 m^{2}-a^{2}\right)^{2}+4\left(b^{2}+3 c^{2}\right)\left(4 m^{2}-a^{2}\right)+16 b^{2} c^{2}-64 m^{2} c^{2}+16 c^{4}-32 m^{2}\left(b^{2}+c^{2}-a^{2}\right)}{64 m^{2} b c}=0 \\
& 16 m^{4}+a^{4}-8 m^{2} a^{2}+8 m^{2} b^{2}+24 m^{2} c^{2}-2 a^{2} b^{2}-6 a^{2} c^{2}+8 b^{2} c^{2}-32 m^{2} c^{2}+8 c^{4}-16 m^{2} b^{2}-16 m^{2} c^{2} \\
& +16 m^{2} a^{2}=0 \\
& \left(16 m^{4}+a^{4}+8 m^{2} a^{2}\right)-8 m^{2} b^{2}-24 m^{2} c^{2}-2 a^{2} b^{2}-6 a^{2} c^{2}+8 b^{2} c^{2}+8 c^{4}=0 \\
& \left(4 m^{2}+a^{2}\right)^{2}-8 m^{2}\left(b^{2}+3 c^{2}\right)-2 a^{2}\left(b^{2}+3 c^{2}\right)+8 c^{2}\left(b^{2}+c^{2}\right)=0 \\
& \left(4 m^{2}+a^{2}\right)^{2}-2\left(b^{2}+3 c^{2}\right)\left(4 m^{2}+a^{2}\right)+8 c^{2}\left(b^{2}+c^{2}\right)=0
\end{aligned}
$$

Let $4 m^{2}+a^{2}=x$ then we get a quadratic equation as follows

$$
\begin{gathered}
x^{2}-2\left(b^{2}+3 c^{2}\right) x+8 c^{2}\left(b^{2}+c^{2}\right)=0 \\
x=\frac{-\left(-2\left(b^{2}+3 c^{2}\right)\right) \pm \sqrt{\left(-2\left(b^{2}+3 c^{2}\right)\right)^{2}-4 \times 1 \times 8 c^{2}\left(b^{2}+c^{2}\right)}}{2 \times 1} \\
x=b^{2}+3 c^{2} \pm \sqrt{b^{4}+9 c^{4}+6 b^{2} c^{2}-86 b^{2} c^{2}-8 c^{4}} \\
x=b^{2}+3 c^{2} \pm \sqrt{b^{4}+c^{4}-2 b^{2} c^{2}} \\
x=b^{2}+3 c^{2} \pm\left(b^{2}-c^{2}\right)
\end{gathered}
$$

Case-1: Taking positive sign, we get

$$
\begin{gathered}
x=b^{2}+3 c^{2}+b^{2}-c^{2} \\
\Rightarrow 4 m^{2}+a^{2}=2\left(b^{2}+c^{2}\right)
\end{gathered}
$$

Case-2: Taking negative sign, we get

$$
\begin{gathered}
x=b^{2}+3 c^{2}-\left(b^{2}-c^{2}\right) \\
4 m^{2}+a^{2}=4 c^{2}
\end{gathered}
$$

This case holds only if $\triangle A B C$ is an isosceles triangle i.e. for $b=c$ but it is not the case i.e. this case does not meet the requirements of a scalene triangle

We accept only case-1 which gives us

$$
\begin{aligned}
& 4 m^{2}+a^{2}=2\left(b^{2}+c^{2}\right) \\
& b^{2}+c^{2}=\frac{1}{2}\left(4 m^{2}+a^{2}\right) \\
& b^{2}+c^{2}=\frac{a^{2}}{2}+2 m^{2}
\end{aligned}
$$

Proved

Proof-3 (Using Pythagoras Theorem): Consider a triangle $\triangle A B C$ having sides BC, AC and AB of lengths $a, b \& c$ respectively and the median AD of length m. Drop a perpendicular AN from vertex A to the side $B C$ (as shown by dotted line AN in the fig-4)

Applying Pythagoras Theorem in right $\triangle A N D$ (See fig-4)

$$
\begin{array}{r}
A N^{2}+N D^{2}=A D^{2} \\
A N^{2}+N D^{2}=m^{2} \quad \ldots \ldots \tag{1}
\end{array}
$$

Applying Pythagoras Theorem in right $\triangle A N B$

$$
\begin{aligned}
A N^{2}+B N^{2} & =A B^{2} \\
A N^{2}+\left(\frac{a}{2}-N D\right)^{2} & =c^{2}
\end{aligned}
$$

$$
\begin{align*}
& A N^{2}+N D^{2}+\frac{a^{2}}{4}-a(N D)=c^{2} \\
& m^{2}+\frac{a^{2}}{4}-a(N D)=c^{2} \quad \quad\left(\text { from (1), } A N^{2}+N D^{2}=m^{2}\right) \\
& a(N D)=m^{2}+\frac{a^{2}}{4}-c^{2} \quad \ldots \ldots \ldots \ldots(2) \tag{2}
\end{align*}
$$

Applying Pythagoras Theorem in right $\triangle A N C$

$$
\begin{aligned}
A N^{2}+N C^{2} & =A C^{2} \\
A N^{2}+\left(\frac{a}{2}+N D\right)^{2} & =b^{2} \\
A N^{2}+N D^{2}+\frac{a^{2}}{4}+a(N D) & =b^{2} \\
m^{2}+\frac{a^{2}}{4}+a(N D) & =b^{2} \quad \\
m^{2}+\frac{a^{2}}{4}+\left(m^{2}+\frac{a^{2}}{4}-c^{2}\right) & =b^{2} \\
m^{2}+\frac{a^{2}}{4}+m^{2}+\frac{a^{2}}{4}-c^{2} & =b^{2} \\
2 m^{2}+\frac{a^{2}}{2} & =b^{2}+c^{2} \\
b^{2}+c^{2} & =\frac{a^{2}}{2}+2 m^{2}
\end{aligned} \quad \text { (from (1), } A N^{2}+N D^{2}=m^{2} \text {) }
$$

Apollonius Theorem for parallelogram: In a parallelogram, the sum of squares of diagonals is equal to twice the sum of the squares of its adjacent sides i.e. if $a \& b$ are lengths of two adjacent sides $\mathrm{AB} \& \mathrm{BC}$ respectively and $d_{1} \& d_{2}$ are the lengths of diagonals AC and BD respectively in a parallelogram $A B C D$ (as shown in fig-5) then

$$
d_{1}^{2}+d_{2}^{2}=2\left(a^{2}+b^{2}\right)
$$

Fig-5: Parallelogram ABCD with adjacent sides a, b \& diagonals d_{1}, d_{2}

Proof: Consider a parallelogram $A B C D$ having adjacent sides $A B=a \& B C=b$ and the diagonals $A C=d_{1} \& B D=d_{2}$. Let the diagonals AC and BD be bisecting each other at the point O (as shown in the fig-6) then we have

$$
A O=O C=\frac{d_{1}}{2} \quad \& B O=O D=\frac{d_{2}}{2}
$$

In $\triangle A B C, \mathrm{BO}$ is median. Now, applying Apollonius theorem in this $\triangle A B C$ as follows

Fig-6: In parallelogram $A B C D, A O=O C=d_{1} / 2$
$\& B O=O D=d_{2} / 2$

$$
\begin{gathered}
A B^{2}+B C^{2}=\frac{A C^{2}}{2}+2(B O)^{2} \\
a^{2}+b^{2}=\frac{d_{1}^{2}}{2}+2\left(\frac{d_{2}}{2}\right)^{2} \\
a^{2}+b^{2}=\frac{d_{1}^{2}}{2}+\frac{d_{2}^{2}}{2} \\
a^{2}+b^{2}=\frac{d_{1}^{2}+d_{2}^{2}}{2} \\
d_{1}^{2}+d_{2}^{2}=2\left(a^{2}+b^{2}\right)
\end{gathered}
$$

Proved

Special Case 1: A rhombus has all four sides equal hence setting $b=a$ in above formula of parallelogram, we get

$$
\begin{gathered}
d_{1}^{2}+d_{2}^{2}=2\left(a^{2}+a^{2}\right) \\
d_{1}^{2}+d_{2}^{2}=4 a^{2}
\end{gathered}
$$

The above result can also be obtained by using Pythagoras theorem in a rhombus.
Special Case 2: A rectangle has both diagonals equal hence setting $d_{1}=d_{2}=d$ in above formula of parallelogram, we get

$$
\begin{aligned}
d^{2}+d^{2} & =2\left(a^{2}+b^{2}\right) \\
2 d^{2} & =2\left(a^{2}+b^{2}\right) \\
d^{2} & =a^{2}+b^{2}
\end{aligned}
$$

The above result is true for a rectangle by Pythagoras theorem.

Note: Above articles had been concluded \& illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering) M.M.M. University of Technology, Gorakhpur-273010 (UP) India

Email: rajpootharishchandra@gmail.com
Author's Home Page: https://notionpress.com/author/HarishChandraRajpoot

