Skip to main content
Article
Targeted Reflection-Waveform Inversion of Experimental Ground-Penetrating Radar Data for Quantification of Oil Spills Under Sea Ice
Geophysics
  • John H. Bradford, Boise State University
  • Esther L. Babcock, GeoTek Alaska, Inc.
  • Hans-Peter Marshall, Boise State University
  • David F. Dickins, DF Dickins Associates, LLC
Document Type
Article
Publication Date
1-1-2016
Abstract

Rapid spill detection and mapping are needed with increasing levels of oil exploration and production in the Arctic. Previous work has found that ground-penetrating radar (GPR) is effective for qualitative identification of oil spills under, and encapsulated within, sea ice. Quantifying the spill distribution will aid effective spill response. To this end, we have developed a targeted GPR reflection-waveform inversion algorithm to quantify the geometry of oil spills under and within sea ice. With known electric properties of the ice and oil, we have inverted for oil thickness and variations in ice thickness. We have tested the algorithm with data collected during a controlled spill experiment using 500-MHz radar reflection data. The algorithm simultaneously recovered the thickness of a 5-cm-thick oil layer at the base of the ice to within 8% of the control value, estimated the thickness of a 1-cm-thick oil layer encapsulated within the ice to within 30% of the control value, and accurately mapped centimeter-scale variations in ice thickness.

Copyright Statement

This document was originally published by the Society of Exploration Geophysicists in Geophysics. Copyright restrictions may apply. doi: 10.1190/geo2015-0170

Citation Information
John H. Bradford, Esther L. Babcock, Hans-Peter Marshall and David F. Dickins. "Targeted Reflection-Waveform Inversion of Experimental Ground-Penetrating Radar Data for Quantification of Oil Spills Under Sea Ice" Geophysics (2016)
Available at: http://works.bepress.com/hanspeter_marshall/26/