In this paper, we focus on the object referral problem in the autonomous driving setting. We propose a novel framework to learn cross-modal representations from transformers. In order to extract the linguistic feature, we feed the input command to the transformer encoder. Meanwhile, we use a resnet as the backbone for the image feature learning. The image features are flattened and used as the query inputs to the transformer decoder. The image feature and the linguistic feature are aggregated in the transformer decoder. A region-of-interest (RoI) alignment is applied to the feature map output from the transformer decoder to crop the RoI features for region proposals. Finally, a multi-layer classifier is used for object referral from the features of proposal regions.
- Cross-modal representations,
- Object referral
IR Deposit conditions: