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Abstract 

In this article, we develop a new optimization model for capital rationing with uncertain project 

returns. Our model maximizes the probability of meeting a pre-defined target return by selecting 

a feasible set of projects subject to budget constraints in multiple time periods. We employ a 

mixed-integer nonlinear algorithm recently developed in the optimization field to solve the 

resulting non-convex optimization problem to optimality. Our model and solution methods are 

tested and validated through a comprehensive computational experiment. Several managerial 

insights are obtained about the impact of available budget and target return on the optimal 

solutions. Notably, we have found that increasing target return may not necessarily result in 

increase of optimal total expected return of the selected projects. Our model and solution method 

offer a unified and computationally tractable approach to precisely quantify the tradeoff between 

project returned and risk. 
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1. Introduction 

Capital rationing aims to allocate limited resources for multiple risky investment opportunities or 

projects (cf. (Fremgen 1973), (Gitman and Forrester 1977)). It is part of the general capital 

budgeting process (cf. (Pinches 1982), (Mukherjee and Henderson 1987)), and plays an 

important role for a firm to align its resources with strategic goals and operational needs. Factors 

impacting capital rationing decisions include the project return, level of project cash flow and 

resource/budget limits per time period. In a typical capital rationing problem, given a set of 

project opportunities with expected return and resource requirements, one needs to make a 

feasible selection of projects, so that the available resource limits are not exceeded and some 

performance measure of the selected projects is optimized. 

The discounted cash flow method to appraise an investment project for its net-present-value 

(NPV) or internal rate of return (IRR) is a well-established approach in capital budgeting. The 

NPV of an investment is computed by the present value of future income subtracting the 

investment cost. Under certainty, a firm should select the project opportunities with positive 

NPVs. This approach assumes unlimited budget or resources, thus does not explicitly serve the 

need of capital rationing. 

In the seminal work of (Weingartner 1963), a linear programming (LP) model was developed 

to maximize the NPV of a project, which is computed as a function of time-dependent cash flow 

and a discount rate. Their model is deterministic in nature in that all input data concerning 

project return, cash flow and budget limits are assumed to be constants. While such deterministic 

optimization approach for capital rationing has been routine for decades since the early 1980s 
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(Gitman and Mercurio 1982), its main drawback is that the uncertain financial impact of project 

opportunities has not been explicitly dealt with. 

Uncertainties are ubiquitous in financial investment and may impact capital budgeting 

decisions (cf. (Schall and Sundem 1980), (Simerly and Li 2000)). (Miller 1992) proposed an 

uncertainty framework with three general types of uncertainty: general uncertainties affecting all 

companies (e.g., inflation, interest, exchange rate), industry-specific uncertainties impacting 

some specific industries (e.g., input market, output market, competitive), and organization 

specific uncertainties which affect only a particular organization (e.g, production, labor). A 

different risk framework has been proposed by (Collier and Berry 2002), which includes four 

domains of risks: financial, operational, political and personal. The existence of uncertainty and 

risk causes the NPV of a project to be a random variable with dispersions, rather than a constant. 

Under such circumstance, the firm is concerned not only with the return of investment, but also 

the risks involved. 

Risk analysis and assessment in financial investment has been intensively studied. Well-

known approaches include the risk-adjusted discount rate (Fama 1977), the certainty equivalent 

(Sick 1986), and the well-known capital asset pricing model (CAPM, (Brick and Weaver 1984)).  

While these methodologies primarily focus on determining appropriate discount rates and risk 

premiums, they do not directly address the capital rationing decision. Recent growing financial 

risks and a volatile economic environment call for more sophisticated methods for capital 

rationing under uncertainty (cf. (Verbeeten 2006), (Singh, Jain et al. 2012)). 
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In this article, we develop a new model and solution approach that directly optimizes capital 

rationing decisions under uncertainty, and in particular, uncertain return of project opportunities. 

Our model optimizes the probability of achieving certain threshold on the total expected return, 

subject to budget constraints over the planning horizon. With the assumption that a project return 

is a random variable and follows independent normal distribution, we show that the objective 

function has a closed form, but is nonlinear. Solving such a nonlinear optimization problem to 

optimality is often computationally challenging. We employ a computational algorithm 

developed in mathematical programming, called the polyhedral branch-and-cut algorithm 

(Tawarmalani and Sahinidis 2005), to obtain an optimal solution for the problem at hand. 

Our work makes the following contributions to the research field. Through optimizing the 

probability of reaching the threshold of total expected return, our model offers an explicit and 

unified approach to address the impact of uncertain return. With the use of an exact optimization 

algorithm and comprehensive computational experiment, we are able to obtain useful managerial 

insights about optimal capital budgeting solutions under variation of problem input data. Our 

model and solution approach provide an effective and efficient decision-support tool for 

practitioners to optimally balance project return and risk. 

The remainder of the article is organized as follows. Section 2 reviews the related literature. 

Section 3 describes the problem setting, and formally presents the model formulation, solution 

method and variation/extension to the basic model. Section 4 presents computational 

experiments and insights obtained. Section 5 draws conclusions and discusses future research 

opportunities. 
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2. Literature Review 

Given the vast research literature in capital budgeting, our review will focus on methodologies 

that directly consider uncertainty in optimizing capital rationing decisions. 

A classical approach for balancing the return and risk of investment opportunities is the well-

known mean-variance model (Markowitz 1952), which optimizes the tradeoff between the total 

expected portfolio return and risk measured by total portfolio variance. The mean-variance 

model relies on a quadratic programming formulation, with the quadratic term representing the 

total variance/covariance of the selected candidate entities (Cornuejols and Tutuncu 2007). An 

efficient frontier of best return-risk pairs can be obtained through sensitivity analysis. The main 

strength of the mean-variance model is its ability to capture the covariance of uncertain returns, 

and optimally diversify the portfolio. To address the capital rationing decision, details about the 

cash flow of project opportunities and cost of capital must be considered. 

In the review of (Verbeeten 2006), real option and game theory approaches are considered as 

being sophisticated capital budgeting practices (SCBP). Real option is a well-known approach to 

value financial investment under uncertainty (Miller and Waller 2003). A key feature of the real 

option approach is its ability to model sequential decisions/options dynamically over time. For 

one project opportunity, the decision-maker has the options to accept, to postpone, to expand or 

to abandon a project at different decision points of the planning horizon ((Trigeorgis 1993), 

(Burgess and Busby 1992)). The value of the investment varies with decision/option chosen, as 

well as uncertainties involved. The main benefit is to achieve flexibility in capital budgeting 

decisions that are adaptive with the realized project cash flows. The classical real option 
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approach, however, lacks means to handle project selection decisions with budget constraints. 

(Meier, Christofides et al. 2001) developed an integrated framework combining the strengths of 

real option and mathematical programming for capital rationing under uncertainty. 

The game theoretic approach addresses capital budgeting decisions under competition. Here 

the payoff/return of an investment opportunity depends not only on the characteristics of the 

opportunity itself, but also the other player’s decision in certain game setting. Then there is 

usually an incentive for a firm to invest early to avoid sacrificing later after a competitor 

preempts the investment opportunity (cf. (Smit and Ankum 1993), (Zhu and Weyant 2003)). 

Other research integrates real option and game theoretic methods to enhance the performance of 

either approach alone (Smit 2003). 

Another line of research applies the stochastic programming (SP), (Birge and Louveaux 2011) 

methodologies to optimize capital rationing decision under uncertainty. Two SP paradigms have 

been implemented. The first one is known as a two-stage SP model with recourse, which makes a 

“here-and-now” first-stage decision, then a second-stage “recourse” decision for each possible 

scenario of uncertain parameter realization. Among others, (Kira, Kusy et al. 2000) modeled 

shortage and surplus of funds as the recourse decision to handle uncertain budget constraints. 

The second paradigm is called chance constrained programming, which directly works with 

probabilistic constraints. Notably, (Sarper 1993) studied uniformly distributed cash flows and 

transformed the model into a deterministic equivalent. (Gurgur and Luxhoj 2003) proposed a 

chance constrained program to ensure the probability of required cash flows will exceed the 

available budgets does not exceed certain threshold, while assuming all the random parameters 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

is
so

ur
i -

 S
t L

ou
is

],
 [

H
ai

ta
o 

L
i]

 a
t 1

6:
55

 1
8 

Fe
br

ua
ry

 2
01

6 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 7 

of project return, cash outflow and available budget follow the normal distribution. (Beraldi, 

Bruni et al. 2012) developed a more general chance constrained programming model with joint 

probability constraints and proposed an exact branch-and-bound method. In a more recent work 

of (Beraldi, Violi et al. 2013), a multistage stochastic programming framework was developed to 

allow the decision-maker to revise decisions during project execution, with the dynamic 

evolution of project return being modelled by a scenario tree over the planning horizon. 

3. Optimization Model and Methods 

This section starts with a formal description of the setting and assumptions of the capital 

rationing problem addressed in this paper. We then present its mathematical formulation and the 

solution method. 

3.1. Problem Description and Assumptions 

Consider a set   of project investment opportunities. Each project     has a projected return  ̃ , 

which is uncertain at the point when the decision is made. For each period   of the time horizon 

       , there is a budget limit of    that cannot be exceeded. Each project     has a 

constant cash outflow     in period  . Given a threshold  , the decision maker needs to select a 

portfolio of projects to maximize the probability of the random total portfolio return being no 

less than  . In the basic version of the problem, we assume that the project return  ̃  for     is 

independently distributed following a normal distribution    ̅    
  , with mean  ̅  and variance 

  
 . 
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Depending on the implementation setting of the problem, the project return  ̃  may have 

different meanings. A commonly accepted approach is to use project NPV as project return, such 

that  ̃  is replaced by the NPV of project  ,  ̃  ∑  ̃          
   , where   is a discount rate 

reflecting decision-maker’s time value of money, and  ̃   is project  ’s net cash flow in period  . 

In general, the net cash flow can be computed as the difference between cash inflow (project 

revenue) and cash outflow (project cost). In our model, we assume that the uncertainty of net 

cash flow is attributed to the uncertain revenue of a project (cash inflow) caused by various 

factors such as sales price, sales volume, economic environment, etc. Thus we have  ̃    ̃   

   , where  ̃   is the random cash inflow of project   in period  , and     is assumed to be constant. 

This assumption applies for capital intensive projects that often incur a large amount of fixed 

costs for equipment and facility, so that there is less uncertainty in project outflow. Examples 

include projects in construction and airline industries. These projects are known to have 

relatively high degree of operating leverage, and are often more sensitive and vulnerable to 

uncertain revenue or cash inflow. The study on the situation where the cash outflow     must be 

treated as being random will be reported elsewhere. 

Because  ̃   is a random variable,  ̃  is also random. The seminal work of (Hillier 1963) 

establishes the validity of normal distribution assumption for NPV. First, for typical prospective 

cash flows normal distribution seems to be a reasonable subjective prior for the decision-maker. 

Second, the Central Limit Theorem suggests that when  ̃          with           are 

mutually independent random variables with finite means and variances, their sum  ̃  will be 

approximately normal if   is large. 
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    An alternative but also well-accepted approach in capital budgeting is to use the internal rate 

of return (IRR) as the criteria in the objective function. Define  ̃ 
  as the IRR of project  , such 

that  ∑  ̃       ̃  
  

     . Then  ̃  can be replaced by  ̃ 
 . (Hillier 1963) shows that the 

probability distribution of IRR can be obtained through the distribution of NPV, and argues that 

if the normality assumption of NPV holds the corresponding IRR will be approximately 

normally distributed. (Fairley and Jacoby 1975) derive analytical results on the probability 

distribution of IRR assuming cash flows follow multivariate normal distributions, and show that 

the normal distribution is a good approximation when variances of cash flow are small. A recent 

study by (Azar and Noueihed 2014) provides a thorough and rigorous simulation study on 

probabilistic IRR, and confirms that the probability distribution of IRR approximates the normal 

distribution under various viable assumptions about cash flows. 

In the numerical example and experimental analysis in Section 4, we have assumed that  ̃  

represent the NPV of project  . The assumption that random project returns are independent is to 

keep the basic version of the model formulation simple. It is only valid when the project 

opportunities under consideration are distinct from each other, which may rarely be the case in 

real life. This assumption will be relaxed in Section 3.3.  

3.2. Model Formulation 

Define binary decision variables    to model the project selection decision, such that      if 

project   is selected, and      otherwise. Then the objective function can be written as: 

                                                              ∑  ̃                                                     (1) 
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    The main constraint of the model is the multi-knapsack type constraint, which ensures that 

total cost of capital funds in each time period   does not exceed the available budget   . 

                                                     ∑                                                             (2) 

    Next we show that with the assumption of normal distribution for project return, the objective 

function (1) can be expressed as a closed-form nonlinear expression. Since the random project 

returns are independent, the standard deviation   of the total return of selected projects can be 

computed as: 

                                                         ∑   
                                                               (3) 

    We then have: 

                          ∑  ̃                         ∑  ̅                               (4) 

    Therefore, the objective function (1) is equivalent to minimizing the z-value in standard 

normal distribution: 

                                                           ∑  ̅                                                           (5) 

    Optimal capital rationing (project selection) decision can be obtained by solving the 

formulation (5) plus (2) and (3), which is an integer nonlinear program. 

We comment on the relationship of the above model with some existing models in the 

literature. It is a direct extension of a multi-knapsack problem or the classical Lorie-Savage 

problem for capital budgeting (Lorie and Savage 1955) by considering uncertain project return 

and minimizing a nonlinear objective function. It also extends the stochastic knapsack problem 
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in the optimization field (cf. (Steinberg and Parks 1979), (Morton and Wood 1998)) by having 

multiple knapsack-type constraints. 

3.3. Correlation among Project Returns 

In the real world setting, the financial performance of a project is often correlated with the 

performance of others. Following the well-known mean-variance approach of (Markowitz 1952), 

define   as a | |  | |  correlation matrix representing the degree of correlation in project 

performance. Each entry          (   ) in   is the correction between project   and  , 

with 1 meaning perfectly correlated and    perfectly negatively correlated. An entry     (   ) 

on the diagonal always equals 1. 

  [

    | |

   
 | |   

]

| | | |

 

Then the | |  | | covariance matrix   of project returns can be computed as below. Each 

entry   
  in the diagonal is the variance of project  ’s return; an entry in the  -th row and  -th 

column is half of the covariance of return between project   and   (    ), which equals 

          , where    and    are the standard deviation of   and  , respectively. 

  [

  
       | |   | |

   
    | |  | |    | |

 
]

| | | |

 

    Let             | |  be a   | |  vector of binary decision variables. The standard 

deviation   of the total return of selected projects becomes: 
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                                                                                                                      (6) 

    The new formulation modeling correlation among project returns will minimize (5) subject to 

(2) and (6), which has more complex quadratic terms in the denominator of the objective 

function compared with the formulation for the basic version of the problem. 

Due to the non-convex form of the objective function (5), it will be difficult for an analytical 

solution to work (as it requires the covariance matrix to be semi-positive definite). Typical 

quadratic programming or mixed-integer nonlinear programming (MINLP) methods may not 

work properly either (Floudas 1995), because these methods often rely on the convexity 

assumption of the model. The existence of multi-knapsack constraints also make the dynamic 

algorithm (DP) proposed by (Morton and Wood 1998) less efficient. 

In this paper, we employ a global optimization algorithm, called polyhedral convex relaxation 

branch-and-cut, developed by (Tawarmalani and Sahinidis 2004) to solve our integer nonlinear 

model for capital rationing. This algorithm successively generates cutting planes to linearize and 

approximate the original non-convex feasible region. Bounds are obtained through such outer 

approximation of the feasible region. Because the algorithm works for a general non-convex 

problem, from the computational perspective, there is no need to require the covariance matrix to 

be semi-positive definite. Comparing with other heuristic global optimization methods, its main 

advantage is the ability to prove optimality, so that the decision-maker is able to know whether a 

solution is optimal, and if not, how good it is. The polyhedral relaxation branch-and-cut 

algorithm is readily available in the Baron Solver of GAMS (Sahinidis 2013). 
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4. Computational Results 

The purpose of our computational experiment is two-fold. Firstly, to examine the behavior of 

optimal capital rationing solution in different problem spaces characterized by key input 

parameters such as number of projects, available budget capacity level and target return. 

Secondly, to understand how our solution performs compared with the deterministic solution 

based on point estimates (PE) of project return, which maximizes the total expected return alone. 

A numerical example is presented next to obtain several observations about the optimization 

approach. Then we show computational results of a comprehensive experiment. 

4.1. A Numerical Example 

A firm is considering a set of 10 investment project opportunities with random returns following 

independent normal distribution        . Each project’s mean return  , variance    and budget 

requirement     over five years are shown in Table 1. The available budget each year is $38M, 

$31M, $33M, $31M, $15M. The firm is attempting to achieve a total target expected return of 

$50M, and would like to find a feasible selection of projects that maximizes the probability of 

meeting the target, without violating the available budgets. 

Table 2 compares the optimal solution found by our solution approach with the one found by 

deterministic PE approach. The deterministic solution obtains the highest possible total expected 

return of $53M, but may end up having a large variance of return, thus sub-optimal probability to 

meet the target return. In this case, our optimal solution achieves the highest probability (67.08%) 

of meeting the target return, with the same total expected return of $53M, but significantly less 

variance. 
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To better understand the behavior of the optimal capital rationing solution, we perform 

sensitivity analysis to examine the impact of input parameters on optimal solutions. In our 

analysis, we focus on the effect of target revenue and budget availability. We let the ratio of 

available budget over the base case vary evenly between [0.82, 1.2] with an increment of 0.02. 

We also vary the target return in the same way. This generates 20 by 20, or 400, instances with 

different combinations of budget level and target return. 

The impact of such changes on the optimal probability of meeting the target return is shown in 

Figure 1. When the available budget increases, the firm is able to select more projects, if possible, 

to increase the probability of meeting the target return, as evident in Figure 1. Note that such a 

relationship does not appear to be smooth, but piece-wise linear, due to the combinatorial nature 

of the addressed problem. That is, optimal probability may stay the same if a budget increase is 

not significant enough. In addition, the slopes of different linear pieces appear to be different, 

indicating that for the same amount of budget increase, the increase in optimal probability may 

be different, depending where the starting budget level is on the curve.  Our optimization 

approach will assist the firm to understand precisely the benefit of each budget increase. 

Observation 1 follows. 

When the target return increases, the optimal probability of meeting it decreases with the same 

available budget. Such a relationship appears to be smooth because the target return resides in 

the objective function, z-value, and the probability density function of normal distribution is 

continuous. We have Observation 2 below. 
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OBSERVATION 1. Budget increase will increase the optimal probability of meeting the target 

return in a piece-wise linear fashion. 

OBSERVATION 2. Increase of target return will reduce the optimal probability of meeting the 

target return in a continuous fashion. 

    The optimal expected total return shows a similar piece-wise linear increasing trend as the 

optimal probability when the available budget increases, as shown in Figure 2. The change of 

target return alone, however, does not appear to impact the optimal expected total return. We 

may state Observations 3 and 4 below. 

OBSERVATION 3. Budget increase will increase optimal expected total return in a piece-wise 

linear fashion. 

OBSERVATION 4. Change of target return will not have significant impact on optimal expected 

total return. 

      We next examine in Figure 3 the relative performance of our optimization solution compared 

with the deterministic solution when both available budget and target return vary. It is observed 

that the advantage of optimal solution diminishes when the available budget is either very ample 

or very scarce. This is because: (i) when the available budget is very ample, the optimization 

problem becomes trivial with the budget constraints being non-binding; (ii) when the available 

budget is tight, the optimal probability of meeting the target return will be small enough so that 

there is really not much difference between an optimal and deterministic solution. More 
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improvement of the optimal solution can be achieved when there is a medium level of budget 

available. We state Observation 5 below. 

OBSERVATION 5. The benefit of optimal solution over deterministic solution diminishes when 

the available budget is either very ample or every tight. 

 

4.2. Experiment Results 

We design and perform a comprehensive experiment to verify and validate the observations 

obtained in the previous section. The parameters controlled in our experiment are presented in 

Table 3. We consider three different problem sizes with 10, 25 and 50 project opportunities. The 

available budget of a time period is controlled by a ratio over the total budget requirement in the 

period. For instance, with the ratio being 0.5 and the total budget requirement of all project 

opportunities being $100M in Period 1, the available budget for Period 1 is set to be $100M   

0.5 = $50M. We vary the ratio between the interval [0.3, 0.48] with a step size of 0.02. The target 

return is controlled in a similar way by a ratio over the total expected return of all project 

opportunities, and we let it vary in the interval [0.3, 0.7] with a step size of 0.1. For each 

combination of project size, budget availability and target return, 10 replicates are generated, 

which gives a total of                 instances. For each instance, we randomly 

generate the mean return, variance of return, and budget requirement per time period of each 

project opportunity, assuming they all follow the uniform distributions as shown in Table 3. Each 

instance is solved by our optimization model and the deterministic approach. 
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Figure 4 shows computational time for the polyhedral branch-and-cut algorithm to solve the 

1,500 instances. The algorithm is very efficient: it takes fractions of a second to solve 10-project 

instances and 1.23 seconds to solve the 50-project instances on average. Problem size is the main 

factor of computational effort, that is, computational time increases as the number of projects 

increases. It appears in Figure 4(a) that the computational time does vary with the available 

budget, and a tighter budget may require more computational time. Hypothesis 1 follows. From 

Figure 4(b) we may observe that the computational time increases when the target return 

increases. We may state Hypothesis 2 below. 

HYPOTHESIS 1. The average computational time increases for instances when the available 

budget becomes tight. 

HYPOTHESIS 2. The average computational time increases for instances with higher target returns. 

 

Corresponding with Observations 1 and 2, we state Hypothesis 3 regarding the optimal 

probability of meeting the target return. Hypothesis 4 can be stated as indicated by Observations 

3 and 4. 

We use linear regression analysis to test Hypothesis 1 ~ 3, with number of projects  , budget 

availability   and target return   as independent variables. Table 4 reports the regression results. 

The numbers in parentheses are the standard error of the coefficient estimates. 

In Model 1 (M1), the dependent variable is the computational time in seconds for solving the 

instances. All the coefficient estimates are significant with       . The negative sign of   
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indicates that the computational time increases when the available budget decreases. The positive 

sign of   verifies that increasing the target return will increase the computational time. Thus 

Hypothesis 1 and 2 are supported. Note that the adjusted R-square is only about 16%, suggesting 

that majority of the variation in computational time cannot be explained by the regression model. 

This is mainly due to the combinatorial nature of the problem, where even a small change in 

input data may significantly impact the computational effort to solve it. 

In Model 2 (M2), the dependent variable is the optimal probability of meeting the target return. 

All the coefficient estimates are statistically significant. The positive sign of   indicates that 

increasing available budget will increase the optimal probability; while the negative sign of    

corroborates that increasing the target return will decrease the optimal probability. Therefore, 

Hypothesis 3 is supported. Note that here more than 80% of variations in optimal probability of 

meeting target return can be explained. 

In Model 3 (M3), the dependent variable is the optimal total expected return of selected 

projects. The coefficient of   is insignificant, thus the target return does not have statistically 

significant effect on the optimal total expected return. The positive sign and the large value of 

the coefficient of   indicate a positive relationship between the available budget and optimal 

total expected return, which supports Hypothesis 4. More impressively, near 98% of the variation 

in total expected return can be explained. 

HYPOTHESIS 3. The optimal probability of meeting the target return will decrease when the 

target return increases; it will increase when the available budget increases. 
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HYPOTHESIS 4. The optimal total expected return will increase when the available budget 

increases; it will not be affected by the target value. 

Figure 5 shows the percentage of improvement of the optimal solutions over the 

deterministic solutions. It clearly indicates that the advantage of our optimization approach is not 

evenly distributed in different problem space, which corroborates the finding of Observation 5. 

 

To examine the impact of correlations in project returns, we randomly generate the correlation 

matrix   for the numerical example in Section 4.1 while considering three scenarios: (i) all 

positive correlations such that     (     is generated using uniform distribution       ; (ii) all 

negative correlations where     (     is generated with        ; (iii) mix of positive and 

negative correlations with     (     following            . Since   is symmetric     is set to 

be equal to    . Table 5 compares the results of the three scenarios with correlations and the case 

without correlation. 

One may observe that in the all positive correlation case the optimal portfolio has higher total 

variance, thus lower optimal probability of meeting the target return. When all the correlations 

are negative, significant hedging effects among project performance exist which makes the total 

variance of the optimal portfolio close to zero with a high probability of achieving the target 

return. When all the correlations are uniformly distributed in the interval [-0.5, 0.5], the 

performance of the optimal portfolio approximates that of the case with no correlation. It is also 
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evident that instances with correlations takes more computational time to solve, due to the more 

complex quadratic term in the formulation (6). 

5. Conclusion and Future Research 

In this article, we have developed a new model to optimize capital rationing decisions with 

uncertain project returns. Our model minimizes the probability of meeting a target total return 

subject to budget constraints in each period of the planning horizon. Under the assumption that 

project returns follow independent normal distributions, it results in solving a mixed-integer 

linear program (MINLP). We apply the polyhedral branch-and-cut algorithm of to solve the 

MINLP. Our model optimizes the tradeoff between project return and risk/variation by 

formulating a probability-type objective function. The advantage is its capability of assisting a 

firm to better assess the impact of risk on capital rationing decisions. 

We have designed and performed a comprehensive computational experiment to examine the 

behavior of optimal solutions, and compare its performance with that of a deterministic approach 

which maximizes the total expected return. Our optimization model and the proposed solution 

method based on the polyhedral branch-and-cut algorithm have shown computational efficiency: 

it spends less than two seconds on average for solving instances with 50 projects. We have also 

obtained several insights. Firstly, as budget increases, the optimal probability of meeting the 

target revenue will increase in a piece-wise linear fashion; and as target return increases, the 

optimal probability will decrease continuously, but in a nonlinear fashion. Our model and the 

corresponding sensitivity analysis offer a rigorous way to precisely quantify the impact of the 

available budget and target value on capital rationing. Secondly, while it is not surprising that the 
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optimal total project return will increase when the available budget increases, we have found that 

increasing the target return will not necessarily increase the optimal total expected return, which 

is somewhat counterintuitive. When a firm’s target return is set to be high, the decision-maker 

may be often under the pressure to favor projects having higher mean returns. Our optimization 

model and solution suggest that when the target return increases, one should still optimally 

balance the project and return, thus the total expected return of the resulting selected project 

portfolio may not increase. Thirdly, through comparison of our optimal capital rationing solution 

with the deterministic solution, we have quantified the advantage of our approach in different 

problem space characterized by problem input data. We find that a firm may gain most benefit 

when the available budget is neither too high nor too low. 

Our work has opened an avenue of research opportunities. Future study is needed to develop 

models and solution methods for the case with general probability distributions of project return. 

There, the challenge is that no closed-form objective function may exist, thus the MINLP 

methods employed in this article will not be applicable. It calls for the development of some 

methodologies combining the optimization and simulation techniques. Another direction is to 

extend the current static one-period model in a multi-period dynamic setting, where the firm has 

more flexibility in their capital rationing decision over time. For example, the company may 

shrink or expand, delay or accelerate a project; it may also accept new project opportunities that 

arrive and abandon an existing one. 
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The complete MINLP formulation for the numerical example in Section 4.1 is presented below. 

Decision variables:      if project   is selected and 0 otherwise, for            

Objective function: 

Minimize     
                                                   

√                                                
 

Subject to: 

Period-1 budget:                                                

Period-2 budget:                                               

Period-3 budget:                                              

Period-4 budget:                                             

Period-5 budget:                                             
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Figure 1. Optimal probability of meeting target return when available  

budget and target return vary. 
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Figure 2. Optimal expected total return when available  

budget and target return vary. 
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Figure 3. Percentage of improvement of optimal solution over the deterministic solution. 
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(a) When available budget varies. 

 

(b) When target return varies. 

Figure 4. Computational time for the test instances.  
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Figure 5. Percentage of improvement when both target ratio and available budget ration 

vary. 
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Table 1. Return and budget requirement of 10 project opportunities. 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

  ($M) 7 12 14 13 12 5 16 11 4 7 

   15 20 15 10 8 20 8 15 20 25 

    

($M) 

5 7 11 9 8 4 12 10 3 6 

    

($M) 

2 5 10 8 8 3 10 6 4 5 

    

($M) 

4 8 8 6 7 4 10 8 5 5 

    

($M) 

3 7 9 7 7 4 9 7 4 4 

    

($M) 

2 3 3 4 3 2 3 4 3 2 
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Table 2. Comparison of optimal and deterministic solutions. 

 Total 

Expected  

Return ($M) 

Total 

Variance of 

Return 

Prob to Meet 

Target Return (%) 

Optimal Solution 53 46 67.08 

Deterministic  

Solution 

53 73 63.73 
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Table 3. Parameters and their values in the experiment. 

Parameters Nature Number of Levels/ 

Type of 

Distribution 

Values 

Num. of projects 

(   

Controlled 3 {10, 25, 50} 

Budget availability 

    

Controlled 10 [0.3, 0.48] with a step size of 

0.02 

Target return     Controlled 5 [0.3, 0.7] with a step size of 

0.1 

Replicate  Controlled 10  

Mean of project 

return 

Random Uniform         

Var of project 

return 

Random Uniform          

Budget 

requirement 

Random Uniform         
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Table 4. Linear regression results.   

Dependent Variable Constant       Adj.    

Computational time 

(M1) 

-0.237* 

(0.237) 

0.029 

(0.002) 

-1.57 

(0.523) 

1.19 

(0.212) 

16.1% 

Optimal probability of 

meeting target return 

(M2) 

0.87 

(0.039) 

0.004 

(0.000) 

2.22 

(0.087) 

-2.655 

(0.035) 

81.4% 

Total exp. return (M3) 

-167.244 

(3.539) 

6.947 

(0.027) 

389.511 

(7.79) 

1.030* 

(3.164) 

97.8% 
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Table 5. Comparison of results with different amount of correlations. 

Scenarios 

Total Expected 

Return ($M) 

Total 

Variance of 

Return 

Opt. Prob. (%) CPU 

(s) 

No correlation 53 46 67.08% < 0.01 

All positive 

correlations 

53 88.43 62.55% 0.75 

All negative 

correlations 

51 0.32 96.16% 1.67 

Mixed positive and 

negative correlations 

53 48.27 66.64% 3.76 
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