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Abstract

Titanosilicalite (TS-1) has been successfully modified by sulfation to exhibit enhanced catalytic activity in the oxidation of 1-
octene with aqueous H,O,. A high activity of the sulfated TS-1 was related to modifications of the local environment of Ti active

site upon interaction with the SO .
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The discovery of the framework substituted micro-
porous materials titanium silicalite-1 (TS-1) was one of
the most important developments in heterogencous
catalysis with in the last decade [1]. These materials ex-
hibit extremely high selectivity in oxidation reactions
using hydrogen peroxide, with water as the major
byproduct. Since there is a low concentration of Ti pre-
sent in TS-1 the catalytically active Ti centers are be-
lieved to be site isolated from each other. This site
isolation is thought to give rise to its unique catalytic
activity and selectivity. It has been reported that the cat-
alytic activity of TS-1 for olefin epoxidation with aque-
ous H,O, could be enhanced by trimethylsilylation in
order to produce hydrophobic TS-1 [2]. However, tri-
methylsilyl group can block the pore of the TS-1 since
its size is considerably big. Here, we demonstrated a sim-
ple method to enhance the catalytic activity of TS-1 in
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epoxidation of 1-octene with aqueous H,O, by sulfa-
tion. This simple method can eliminate the possibility
of pore blockage.

2. Experimental
2.1. Synthesis

TS-1 (2% of Titanium, mol%) was prepared accord-
ing to a procedure described earlier [1,3], using reagents,
i.e., tetraethyl orthosilicates (Merck, 98%), tetraethyl
orthotitanate (Merck, 95%) in isopropyl alcohol, tetra-
propylammonium hydroxide (Merck, 20% TPAOH in
water) and distilled water. The hydrothermal crystalliza-
tion was carried out at 175 °C under static condition in
the stainless steel autoclave for 4 days.

Sulfated TS-1 was prepared by impregnation method
as follows: About 1 g of TS-1 was added into 25 ml of
H,SO,4 0.5 M under vigorous stirring at 80 °C for 3 h.
After evaporation of water, the solid was dried at
100 °C for 24 h. The solid sample was then calcined at
550 °C for 3 h. The sample was denoted as SO4/TS-1.
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2.2. Characterizations

The solid structure was determined by using X-ray
diffraction (XRD), infrared (IR) and UV-Vis Diffuse
Reflectance (UV—Vis DR) spectroscopy techniques. All
samples were characterized by powder XRD for the
crystallinity and phase content of the solid materials
using a Bruker Advance D8 Diffractometer with the
Cu Ka (4 =1.5405 A) radiation as the diffracted mono-
chromatic beam at 40 kV and 40 mA. The sample was
scanned in the 26 range between 5° and 50°. IR spectra
of the samples were collected on a Perkin—Elmer Fourier
Transform Infrared, with a spectral resolution of 2
ecm™ !, scans 10 s, at room temperature by KBr pellet
method. The framework spectra were recorded in the re-
gion of 1400400 cm~'. UV-Vis DR spectra were re-
corded under ambient conditions on a Perkin-Elmer
Lambda 900 UV/Vis/NIR spectrometer. The acidity of
the solids characterized by absorbed base probe mole-
cule. The wafer of the sample (10-12 mg) was locked
in the cell equipped with CaF, windows, and evacuated
at 400 °C under vacuum condition for 4 h. Pyridine as
probe molecule was introduced into the evacuated sam-
ple at room temperature. IR spectra of the sample was
monitored at room temperature after desorption of pyri-
dine at 150 °C for 1 h.

2.3. Epoxidation of 1-octene

All reactions were carried out at room temperature
with 1-octene (1.0 ml), 30% H,O, (0.5 ml), a mixture
of methanol (5 ml) and acetone (5 ml) as solvent, and
catalyst (50 mg) with stirring. The products of reaction
were analyzed by GC and GC-MS.

3. Results and discussion

XRD was used to characterize the structure and the
crystallinity of the TS-1 and SO4/TS-1. All samples show
similar XRD patterns characteristic of MFI structure
type of zeolite. Introduction of SOf[ anions into the
TS-1 has no effect on the sample crystallinity, with less
than 1% changes. This suggests that the MFT structure
of TS-1 is still maintained after the introduction of
SO; . IR spectra of TS-1 and SO4/TS-1 samples show
a peak at around 970 cm~! which is a characteristic
for titanium with tetrahedral structure (Fig. 1). This
band appears to be diminished in the sulfated material,
suggesting the decrease in the amount of tetrahedral
titanium in SO4/TS-1. IR spectrum of SO4/TS-1 shows
a new peak at around 1384 cm ™' which is corresponded
to the asymmetric stretching vibration of the covalent
S=O0 for SO;™ ion.

Fig. 2 shows UV—Vis DR spectra of TS-1 and SO,/
TS-1. The band in the range of 190-220 nm is attributed
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Fig. 1. FTIR spectra of: (a) TS-1; (b) SO,/TS-1.
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Fig. 2. Absorption spectrum of: (a) TS-1; (b) SO4/TS-1.

to a charge-transfer of the tetrahedral titanium sites be-
tween O~ and the central Ti(IV) atoms, while octahe-
dral Ti is observed at around 310-330 nm [4,5]. It
shows that, for TS-1, only single high intense band at
around 208 nm can be observed. This band is attributa-
ble to titanium in the tetrahedral structure. Impregna-
tion of SO; into the TS-1 shows a medium intense
band at around 215-228 nm and a shoulder band at
around 270-312 nm, characteristic for titanium with tet-
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rahedral and octahedral structure, respectively. The
peak intensity of tetrahedral titanium for SO4/TS-1 is
lower than that of the parent sample (TS-1). The de-
crease in intensity of the tetrahedral titanium and the
formation of the octahedral titanium indicate the occur-
rence of the transformation of some of the tetrahedral
titanium framework to the octahedral structure or the
extraframework during the sulfation. It has been calcu-
lated that 49% of tetrahedral titanium in the parent sam-
ple have been modified by sulfation.

As shown in Fig. 2, the wavelength of absorption
band of the tetrahedral titanium sites (i.e., 288 nm) of
SO4/TS-1 is higher than that of TS-1 (i.e., 208 nm). It
could be that the Ti—-O-S bonding in SO4/TS-1 lowered
the charge-transfer excited state involving an electron
transfer from O~ to Ti"* [6]:

[Ti"-0> ] &[T V-0 "

This phenomenon is supported by the fact that the
band at 970 cm ™' of TS-1, which is corresponded to tet-
rahedral titanium, is shifted to higher wavenumber in
SO4/TS-1 (see Fig. 1). The shift to higher wavenumber
is expected since the presence of SO, 2 species in SO4/
TS-1 weakened the Ti—O-Si bonding, resulting in a
longer bond length and hence decreasing the force con-
stant of Ti—O-Si.

The acidity of the samples was characterized by pyri-
dine adsorption. TS-1 and SO4/TS-1 only show the peak
at around 1450 cm ™' (which is corresponded to Lewis
acid site), while the peak at around 1545 cm™' (which
is corresponded to Bronsted acid site) was not observed
(Fig. 3). This indicates that all samples only contain Le-
wis acid sites. It has been calculated that the amount of
the Lewis acid sites in TS-1 and SO4/TS-1 were 12 and 8
umol g~ !, respectively, indicating a decrease of 33% in
the Lewis acid concentration of SO4/TS-1 from the
TS-1. This result suggests that the removal of tetrahe-
dral titanium from the lattice to form octahedral species
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Fig. 3. FTIR spectra of: (a) TS-1; (b) SO4/TS-1 after following
treatments: heated at 400 °C for 4 h in vacuum, adsorbed pyridine at
room temperature, and desorbed pyridine at 150 °C for 1 h.

is the reason for the decrease in the acidity, since the
amount of the Lewis acid sites correlate to the amount
of tetrahedral titanium. No diol is observed in the reac-
tion product of the epoxidation of 1-octene with aque-
ous H,O, confirming that no Bronsted acid sites are
present in the samples.

The infrared spectra of the TS-1 and SO4/TS-1 in the
range of hydroxyl stretching regions at 4000-3000 cm !
were recorded after evacuation in vacuum at 400 °C for
4 h (Fig. 4). TS-1 shows an intense band at 3736 cm ™!
and a broad band at 3526 cm™', characteristics for ter-
minal silanol hydroxyl groups and hydroxyl groups with
hydrogen bonding of water molecule with silanol
groups, respectively [5]. The sulfation of TS-1 caused
the sharp band of silanol groups to decrease significantly
and becomes broader in the ranges of 3740-3726 cm ™',
suggesting the formation of defect sites in the surface of
TS-1. Meanwhile, the broad band for hydroxyl groups
around 3500 cm ™! increases due to the hydroxyl groups
are bounded on the sulfur centers.

As shown in Fig. 5, sulfation onto the surface of TS-1
increases its epoxidation activity. This phenomenon may
be explained in terms of the local environment of Ti ac-
tive site. It is generally accepted that isolated Ti(IV) are
considered the most active species in epoxidation reac-
tion. It has been found that tripodal open lattice site
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Fig. 4. FTIR spectra of: (a) TS-1; (b) SO4/TS-1 after heated at 400 °C
for 4 h in vacuum.
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Fig. 5. The yield of 1,2-epoxyoctane on the epoxidation of l-octene
using TS-1 and SO,4/TS-1. The reactions were carried out at room
temperature with 1-octene (1.0 ml), 30% H,O, (0.5 ml) and catalyst
(50 mg).

[i.e., Ti(OSi);0H] of Ti on the TS-1 surface was more
active compared to the bipodal [i.e., Ti(OSi),(OH),]
and the tetrapodal closed lattice sites [i.e., Ti(OSi)4]
[7,8]. Based on these findings, the effect of sulfation on
increasing the epoxidation activity of SO4/TS-1 can be
explained by the presence of tripodal Ti active site. As
shown in Fig. 6, it proposes that the bipodal Ti reacted
with SO~ giving Ti(Si0),SO, and followed by the
hydration of Ti(SiO),SO,4 resulting in the tripodal Ti site
[i.e., Ti(OSi),(SO5)OH].

The alternative explanation for the higher activity of
SO4/TS-1 is that the possibility of the formation of new
sites generated by sulfation on the surface TS-1. The
UV-Vis DR spectra shown in Fig. 2 clearly show that
Ti has been removed from the lattice to form octahedral
species. It is possible that it can migrate to the external
surface. Since 1-octene is a relatively large molecule, one
considers that an increase the number of external active
sites and access on them could be a cause for the higher
activity.

Based on the above considerations, the high activity
of SO4/TS-1 for epoxidation of 1-octene by aqueous
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Fig. 6. Proposed model of the local environment structure of Ti:
(a) bipodal; (b) tetrapodal; (c) tripodal.

hydrogen peroxide can be considered as the influence
of the attachment of SO; to the Ti active sites or alter-
natively, the formation of new sites generated by sulfa-
tion in the surface TS-1.
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