Composition−Structure Relationships in Polar Intermetallics:  Experimental and Theoretical Studies of LaNi1+xAl6-x (x = 0.44)

Thumbnail Image
Supplemental Files
Date
2004-01-01
Authors
Gout, Delphine
Benbow, Evan
Gourdon, Olivier
Miller, Gordon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Miller, Gordon
University Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

A new ternary aluminide, LaNi1+xAl6-x (x = 0.44), has been synthesized from La, Ni, and Al in sealed silica tubes. Its structure, determined by single-crystal X-ray diffraction, is tetragonal P4/mmm (No. 123) with Z = 1 and has the lattice parameters a = 4.200(8) and c = 8.080(8) Å. Refinement based on Fo2 yielded R1 = 0.0197 and wR2 = 0.020 [I > 2σ(I)]. The compound adopts a structure type previously observed in SrAu2Ga5 and EuAu2Ga5. The atomic arrangement is closely related to the one in BaAl4 as well as in other rare-earth gallide compounds such as LaNi0.6Ga6, HoCoGa5, Ce4Ni2Ga20, Ce4Ni2Ga17, Ce4NiGa18, and Ce3Ni2Ga15. This structure exhibits a large open cavity which may be filled by a guest atom. Band structure calculations using density functional theory have been carried out to understand the stability of this new compound.

Comments

Reprinted (adapted) with permission from Inorg. Chem., 2004, 43 (15), pp 4604–4609. Copyright 2004 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2004
Collections