Using Systems Science to Optimize Health Security Coalitions and Networks: Applications with the National Health Security Preparedness Index

Glen P. Mays, University of Kentucky

Available at: https://works.bepress.com/glen_mays/309/
Using Systems Science to Optimize Health Security Coalitions & Networks

Applications with the National Health Security Preparedness Index

Glen Mays, PhD; Michael Childress, MA; Dominique Zephyr, MS; Anna Hoover, PhD
University of Kentucky

glen.mays@uky.edu
@GlenMays
www.nhspi.org
Health security requires collective actions across many activities and sectors

- Surveillance
- Environmental monitoring
- Laboratory testing
- Communication systems
- Response planning
- Incident management
- Emergency response
- Surge capacity
- Management & distribution of countermeasures
- Continuity of healthcare delivery
- Community engagement
- Workforce protection
- Volunteer management
- Education & training
- Drills & exercises
- Information exchange
- Evacuation & relocation
- Infrastructure resiliency
- Protections for vulnerable populations
Why a Health Security Index?

Track national progress in health security as a shared responsibility across sectors

- Raise public awareness
- Identify strengths and vulnerabilities
- Detect gains and losses
- Encourage coordination & collaboration
- Facilitate planning & policy development
- Support benchmarking & quality improvement
- Stimulate research & innovation
Networks as Force Multipliers

- Enhance coordination
- Accelerate information flow
- Acquire new ideas
- Spread innovations
- Build resilience

Background and Rationale

- Density
- Centralization
Key questions to explore with the Index

- How do health security levels vary across states and change over time?

- What roles do networks and coalitions play in shaping the dynamics of health security?
 - Healthcare Coalitions
 - Other community networks

- How can we strengthen coalitions & networks to improve overall health security?
Measurement: National Health Security Index

- 139 individual measures
- 19 subdomains
- 6 domains
- State overall values
- National overall values
- Normalized to 0-10 scale using min-max scaling to preserve distributions
- Imputations based on multivariate longitudinal models
- Empirical weights based on Delphi expert panels
- Bootstrapped confidence intervals reflect sampling and measurement error
- Annual estimates for 2013-2016

<table>
<thead>
<tr>
<th>Reliability by Domain</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health security surveillance</td>
<td>0.712</td>
</tr>
<tr>
<td>Community planning & engagement</td>
<td>0.631</td>
</tr>
<tr>
<td>Incident & information management</td>
<td>0.734</td>
</tr>
<tr>
<td>Healthcare delivery</td>
<td>0.596</td>
</tr>
<tr>
<td>Countermeasure management</td>
<td>0.654</td>
</tr>
<tr>
<td>Environmental/occupational health</td>
<td>0.749</td>
</tr>
</tbody>
</table>
Methods & Data

Index measurement domains & subdomains

- Health Security Surveillance
 - Health Surveillance & Epidemiological Investigation
 - Biological Monitoring & Laboratory Testing

- Community Planning & Engagement
 - Cross-Sector / Community Collaboration

- Incident & Information Management
 - Incident Management & Multi-Agency Coordination
 - Emergency Public Information & Warning

- Healthcare Delivery
 - Prehospital Care
 - Inpatient Care

- Countermeasure Management
 - Medical Materiel Management, Distribution, & Dispensing
 - Countermeasure Utilization & Effectiveness

- Environmental & Occupational Health
 - Food & Water Security
 - Environmental Monitoring

- Social Capital & Cohesion

- Management of Volunteers during Emergencies

- Legal & Administrative

- Long-Term Care
 - Non-Pharmaceutical Intervention

- Mental & Behavioral Healthcare

- Home Care
Two Index measures capture network attributes

- Healthcare Coalition Membership Penetration
 - Local public health agencies
 - Local emergency management agencies
 - Hospitals
 - EMS agencies

- Comprehensiveness of Local Public Health Networks (Public Health System Capital)
 - Density
 - Centrality
Steady but slow progress

2017 Results

*statistically significant change
The U.S. improved in most domains during 2013-16, except healthcare delivery and environmental health.

*statistically significant change
Geographic disparities in health security are large and persistent
Changes vary widely across states and domains

<table>
<thead>
<tr>
<th>Category</th>
<th>Lowest State</th>
<th>US Average</th>
<th>Highest State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Security Surveillance</td>
<td></td>
<td>US +9.7%</td>
<td>VT +11.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO +10.2%</td>
<td></td>
</tr>
<tr>
<td>Community Planning & Engagement</td>
<td></td>
<td>US +16.0%</td>
<td>VT +32.1%</td>
</tr>
<tr>
<td></td>
<td>IA +5.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident & Information Management</td>
<td></td>
<td>US +2.5%</td>
<td>VA +7.9%</td>
</tr>
<tr>
<td></td>
<td>HI –2.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthcare Delivery</td>
<td></td>
<td>US +3.9%</td>
<td>NH +0.0%</td>
</tr>
<tr>
<td></td>
<td>LA –2.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Countermeasure Management</td>
<td></td>
<td>US +7.7%</td>
<td>CO +8.0%</td>
</tr>
<tr>
<td></td>
<td>AK +7.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental & Occupational Health</td>
<td></td>
<td>US –1.4%</td>
<td>VA +1.1%</td>
</tr>
<tr>
<td></td>
<td>OK –51.9%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index Values in 2013 and 2016
Network drivers: density & penetration

Participation in Healthcare Preparedness Coalitions

2017 Results
Network drivers: density & centrality

Communities with Strong Multi-Sector Networks (Comprehensive Public Health System Capital)

*statistically significant difference
Unpacking public health system capital
One of RWJF’s Culture of Health National Metrics

- **Broad scope** of public health activities
- **Dense network** of multi-sector relationships
- **Central actors** to coordinate actions

Access to public health

Overall, 47.2 percent of the population is covered by a comprehensive public health system. Individuals are more likely to have access if they are non-White (51.5 percent vs. 45.5 percent White) or live in a metropolitan area (48.7 percent vs. 34.1 percent in nonmetropolitan areas).

47.2%

of population served by a comprehensive public health system

Mapping public health system capital

Node size = degree centrality
Line size = % activities jointly contributed (tie strength)

Organizational contributions to system capital, 1998-2016

<table>
<thead>
<tr>
<th>Type of Organization</th>
<th>1998</th>
<th>2016</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local public health agencies</td>
<td>60.7%</td>
<td>67.5%</td>
<td>11.1%</td>
</tr>
<tr>
<td>Other local government agencies</td>
<td>31.8%</td>
<td>33.2%</td>
<td>4.4%</td>
</tr>
<tr>
<td>State public health agencies</td>
<td>46.0%</td>
<td>34.3%</td>
<td>-25.4%</td>
</tr>
<tr>
<td>Other state government agencies</td>
<td>17.2%</td>
<td>12.3%</td>
<td>-28.8%</td>
</tr>
<tr>
<td>Federal government agencies</td>
<td>7.0%</td>
<td>7.2%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Hospitals</td>
<td>37.3%</td>
<td>46.6%</td>
<td>24.7%</td>
</tr>
<tr>
<td>Physician practices</td>
<td>20.2%</td>
<td>18.0%</td>
<td>-10.6%</td>
</tr>
<tr>
<td>Community health centers</td>
<td>12.4%</td>
<td>29.0%</td>
<td>134.6%</td>
</tr>
<tr>
<td>Health insurers</td>
<td>8.6%</td>
<td>10.6%</td>
<td>23.0%</td>
</tr>
<tr>
<td>Employers/businesses</td>
<td>16.9%</td>
<td>15.3%</td>
<td>-9.6%</td>
</tr>
<tr>
<td>Schools</td>
<td>30.7%</td>
<td>25.2%</td>
<td>-17.9%</td>
</tr>
<tr>
<td>Universities/colleges</td>
<td>15.6%</td>
<td>22.6%</td>
<td>44.7%</td>
</tr>
<tr>
<td>Faith-based organizations</td>
<td>19.2%</td>
<td>17.5%</td>
<td>-9.1%</td>
</tr>
<tr>
<td>Other nonprofit organizations</td>
<td>31.9%</td>
<td>32.5%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Other</td>
<td>8.5%</td>
<td>5.2%</td>
<td>-38.4%</td>
</tr>
</tbody>
</table>
Health effects attributable to system capital

Impact of Comprehensive Systems on **Mortality**, 1998-2014

Fixed-effects instrumental variables estimates controlling for racial composition, unemployment, health insurance coverage, educational attainment, age composition, and state and year fixed effects. N=1019 community-years

Mays GP et al. *Health Affairs* 2016
Economic effects attributable to system capital

Impact of Comprehensive Systems on Medical Spending (Medicare) 1998-2014

Models also control for racial composition, unemployment, health insurance coverage, educational attainment, age composition, and state and year fixed effects. N=1019 community-years. Vertical lines are 95% confidence intervals

Mays GP et al. Health Services Research 2017
Economic effects attributable to system capital

Impact of Comprehensive Systems on Life Expectancy by Income (Chetty), 2001-2014

Models also control for racial composition, unemployment, health insurance coverage, educational attainment, age composition, and state and year fixed effects. N=1019 community-years. Vertical lines are 95% confidence intervals.
Conclusions & Implications

- Health security driven in part by the strength of networks:
 - Healthcare Coalitions
 - Multi-sector public health systems
- Network strength varies widely across communities & changes over time
- Networks have large health & economic implications for their communities

Discussion
Conclusions and implications

- Large health gains in places with strong system capital
- Larger gains for low-income populations
- Comprehensive systems do more than just plan: prioritize, invest, evaluate, repeat (crowd-sourcing)
- Equity and opportunity: more than half of communities currently lack comprehensive system capital
- ACA incentives and resources may help:
 - Hospital community benefit
 - Value-based health care payments
 - Insurer and employer incentives
- Sustainability and resiliency are not automatic
Caveats and cautions

- Imperfect measures & latent constructs
- Timing and accuracy of underlying data sources
- Unobserved within-state heterogeneity
- Short panel
- Observational, not causal, estimates
National Advisory Committee Members | 2016-17

Supported by the Robert Wood Johnson Foundation

Thomas Inglesby, MD (Chair), Johns Hopkins University
Robert Burhans, Health Emergency Management Consultant
Anita Chandra, DrPH, RAND
Mark DeCourcey, U.S. Chamber of Commerce Foundation
Eric Holdeman, Emergency Management Consultant
Harvey E. Johnson, Jr., American Red Cross
Ana Marie Jones, Interpro
Dara Lieberman, MPP, Trust for America’s Health
Nicole Lurie, MD, MSPH, ASPR (through 1/2017)
Suzet McKinney, DrPH, MPH, Illinois Medical District Commission
Stephen Redd, MD, CDC Office of Public Health Preparedness & Response
Richard Reed, MSW, American Red Cross (through 2/2016)
John Wiesman, DrPH, MPH, Washington State Secretary of Health

Special appreciation to Index collaborators at CDC, ASPR, ASTHO, APHL, NACCHO, RAND, members of the Model Design and Analytic Methodology Workgroup, and the Stakeholder Engagement and Communications Workgroup.

Visit or join an Index workgroup at http://nhspi.org/get-involved/
For More Information

National Program Office

Supported by The Robert Wood Johnson Foundation

Glen P. Mays, Ph.D., M.P.H.

Email: NHSP@uky.edu
Web: www.nhspi.org
www.systemsforaction.org
Archive: works.bepress.com/glen_mays
Blog: publichealth economics.org

To receive updates from the Health Security Index, email listserv@lsv.uky.edu with “Subscribe NHSPIndex” in the body