Medicaid Expansions & Public Health Spending: Cross-Subsidies, Complementarities, and Crowd-Out

Glen Mays, University of Kentucky

Available at: https://works.bepress.com/glen_mays/181/
Medicaid Expansions & Public Health Spending: Cross-Subsidies, Complementarities, and Crowd-Out

Glen Mays, PhD, MPH
University of Kentucky
glen.mays@uky.edu

APHA Annual Meeting | New Orleans, LA | 18 November 2014
Acknowledgements

- Funded by the Robert Wood Johnson Foundation through the National Coordinating Center for Public Health Services & Systems Research
- Supported by the NIH National Center for Advancing Translational Science through the Kentucky Center for Clinical and Translational Science
- Data provided by the University of Kentucky Center for Poverty Research, supported by USDHHS/ASPE
- Additional data provided by the National Association of County and City Health Officials, National Profile of Local Health Departments
Governmental financing streams for public health

Governmental Expenditures for Public Health Activity, USDHHS National Health Expenditure Accounts

- State and local
- Federal

U.S. Centers for Medicare and Medicaid Services, Office of the Chief Actuary
Trends in public health spending

Governmental Expenditures for Public Health Activity, USDHHS National Health Expenditure Accounts

- Percent of NHE
- Percent of GDP (x10)
- Per capita ($100s nominal)
- Per capita ($100s constant)

U.S. Centers for Medicare and Medicaid Services, Office of the Chief Actuary
$19 billion in new federal public health spending over 10 years (cut by $6B in 2012)

Public Health and Prevention Trust Fund

Incentives for hospitals, health insurers, employers to invest in public health and prevention

Research on optimal public health delivery

Subtitle D—Support for Prevention and Public Health Innovation

Patient Protection and Affordable Care Act of 2010

SEC. 4301. RESEARCH ON OPTIMIZING THE DELIVERY OF PUBLIC HEALTH SERVICES.

(a) IN GENERAL.—The Secretary of Health and Human Services (referred to in this section as the “Secretary”), acting through the
ACA’s Medicaid expansion could have unintended consequences for public health

- States face higher Medicaid spending
 - previously-eligible/newly-enrolled beneficiaries
 - Enhanced benefits
 - Reduction in 100% FMAP for newly eligible after 2016
- Federal matching policies encourage states to channel health expenditures to Medicaid
- New Medicaid expenditures may crowd out other state and local public health spending
Research questions of interest

- Do states respond to increases in Medicaid spending by changing (reducing) spending on other public health activities?
- What are the likely health and economic effects of Medicaid-induced changes in public health spending?
Defining public health activities

- Epidemiologic **surveillance & investigation**
- Community health **assessment & planning**
- Communicable disease control
- Chronic disease and injury prevention
- Health education and communication
- Environmental health **monitoring and assessment**
- Enforcement of health **laws and regulations**
- Inspection and licensing
- **Inform, advise, and assist** school-based, worksite-based, and community-based health programming

...and roles in **assuring access** to medical care

Prior Research: Mortality reductions attributable to local public health spending, 1993-2008

Hierarchical regression estimates with instrumental variables to correct for selection and unmeasured confounding

Mays et al. 2011
Prior Research: Medical cost offsets attributable to local public health spending 1993-2008

Offset elasticity = -0.088

Research Design & Data

- Longitudinal cohort of the 51 states and their local governments during 1993-2011
- Census Bureau’s Annual Survey of Government Finances and Census of Governments
- CMS Medicaid program expenditure data
- UK Poverty Research Center file on state economic and transfer program measures
Analytic Approach

- **Spending Share Equation models** (Craig and Howard 2013)

\[
\begin{align*}
(Medicaid$/Total$)_{it} &= \beta X_{it} + \delta Z_{it} + \mu_i + \varphi_t + \epsilon_{ijt} \\
(Other$/Total$)_{it} &= \alpha (Medicaid$/Total$)_{it} + \beta X_{it} + \lambda Z_{it} + \mu_i + \varphi_t + \epsilon_{ijt} \\
(PublicHealth$/Total$)_{it} &= \alpha (Medicaid$/Total$)_{it} + \pi (Other$/Total$)_{it} + \beta X_{it} + \mu_i + \varphi_t + \epsilon_{ijt}
\end{align*}
\]

- Separate **state-level** (n=833) and **local-level** (n=9231) models
- State and year **fixed-effects**
- **Instrumental variables** (Z) to control for endogeneity of Medicaid spending
Analytic Approach

Demand & Supply Factors (X_{it})
- Population size
- Income per capita
- Poverty rate
- Uninsured rate
- Smoking & obesity prevalence
- Tax burden
- Political party of Governor
- Political split of legislature

Instrumental Variables (Z_{it})
- FMAP, FMAP2
- Share of population TANF
- Share of population SSI
- Share of population SNAP
- Share of population FSB
- Federal intergovernmental transfers/capita

Federally directed policies (exogenous to state/local decisions)
Results: Medicaid and Public Health Shares of State Spending

![Graph showing Medicaid and Public Health Spending Shares of State Spending](image-url)
Results: Determinants of Medicaid Spending

Effects of IVs on Medicaid Spending Share

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Coeff.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMAP</td>
<td>0.890</td>
<td>0.436**</td>
</tr>
<tr>
<td>FMAP2</td>
<td>-0.008</td>
<td>0.004*</td>
</tr>
<tr>
<td>TANF recipients</td>
<td>-0.251</td>
<td>0.139*</td>
</tr>
<tr>
<td>SSI recipients</td>
<td>2.873</td>
<td>0.641***</td>
</tr>
<tr>
<td>SNAP recipients</td>
<td>0.118</td>
<td>0.132</td>
</tr>
<tr>
<td>School Breakfast recipients</td>
<td>2.715</td>
<td>0.319***</td>
</tr>
<tr>
<td>Federal transfers/capita</td>
<td>-0.023</td>
<td>0.009**</td>
</tr>
</tbody>
</table>

Partial F (17,767) = 17.45***
Excludability J test = 1.73

***p<0.01 **p<0.05 *p<0.10
Results: Estimated Crowd Out Effects

Effects of Medicaid Spending Share on State Public Health Spending Share

<table>
<thead>
<tr>
<th>Model</th>
<th>Coeff.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced form (FMAP)</td>
<td>-0.006</td>
<td>0.002***</td>
</tr>
<tr>
<td>Fixed-effects</td>
<td>-0.112</td>
<td>0.012***</td>
</tr>
<tr>
<td>IV fixed effects</td>
<td>-0.082</td>
<td>0.031***</td>
</tr>
</tbody>
</table>

***p<0.01
Results: Estimated Crowd Out Effects

Effects of Medicaid Spending Share on Local Public Health Spending Share

<table>
<thead>
<tr>
<th>Model</th>
<th>Coeff.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced form (FMAP)</td>
<td>-0.004</td>
<td>0.001**</td>
</tr>
<tr>
<td>Fixed-effects</td>
<td>-0.089</td>
<td>0.019***</td>
</tr>
<tr>
<td>IV fixed effects</td>
<td>-0.077</td>
<td>0.038***</td>
</tr>
</tbody>
</table>

***p<0.01 **p<0.05
Estimated Effect of Medicaid Spending Growth on Public Health Spending/Capita

At Median Medicaid Budget Share Growth of 3.9%

<table>
<thead>
<tr>
<th>State Public Health Spending</th>
<th>Local Public Health Spending</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25%</td>
<td>-20%</td>
</tr>
<tr>
<td>-20%</td>
<td>-15%</td>
</tr>
<tr>
<td>-15%</td>
<td>-10%</td>
</tr>
<tr>
<td>-10%</td>
<td>-5%</td>
</tr>
<tr>
<td>-5%</td>
<td>0%</td>
</tr>
<tr>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>20%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Estimated Effect of Medicaid Spending Growth on Delivery of Recommended Public Health Services

At Median Medicaid Budget Share Growth of 3.9%

<table>
<thead>
<tr>
<th>Availability</th>
<th>Intensive Margin</th>
<th>Extensive Margin</th>
<th>Perceived Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>-35%</td>
<td>-30%</td>
<td>-25%</td>
<td>-20%</td>
</tr>
<tr>
<td>-25%</td>
<td>-20%</td>
<td>-15%</td>
<td>-10%</td>
</tr>
<tr>
<td>-15%</td>
<td>-10%</td>
<td>-5%</td>
<td>0%</td>
</tr>
<tr>
<td>-5%</td>
<td>0%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>0%</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>5%</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
</tr>
</tbody>
</table>

[Graph showing the estimated effect of Medicaid spending growth on delivery of public health services]
10-Year Projected Effects of Crowd-out on Preventable Mortality Rates

Using 10-year mortality effect estimates from Mays and Smith, *Health Affairs* 2011
Medicaid mortality effect estimates from Sommers et al. *Annals of Internal Medicine* 2014
An Aside: Effects of State Political Party Control on Medicaid Crowd-out of Public Health Spending

Change in Share of State Budget for Public Health

Democratic Governor

% State House Democratic

% State Senate Democratic
Conclusions

- Substantial crowd-out in public health spending results from Medicaid spending growth.
- The magnitude of crowd-out is sufficient to produce sizeable health effects over time.
- Crowd-out may reduce or fully offset the direct mortality gains from increases in health insurance coverage (e.g. Sommers et al 2014).
- Crowd-out may be larger for lower-resource states and communities.
Implications for Policy & Practice

- Roles for federal spending, e.g. Prevention & Public Health Fund
- Maintenance of effort requirements/incentives
- Nongovernmental contributions to public health
- Alignment between primary care & public health
Limitations and Next Steps

- Aggregate and imprecise spending measures
- Lagged effects
- ACA experience may differ from past Medicaid expansions
- Accounting for mortality effects of Medicaid and public health simultaneously
For More Information

Glen P. Mays, Ph.D., M.P.H.
glen.mays@uky.edu

Supported by The Robert Wood Johnson Foundation

Email: publichealthPBRN@uky.edu
Web: www.publichealthsystems.org
Journal: www.FrontiersinPHSSR.org
Archive: works.bepress.com/glen_mays
Blog: publichealtheconomics.org