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 Tensions in the Productivity in Design Task  

Tinkering - Fundamental 

 

Introduction 

Tinkering is an ad-hoc approach to a problem and involves the practice of manipulating objects 

to characterize and build knowledge about a particular system in an exploratory way, often with 

the goal of getting some product/idea to produce desired behavior.1-5 Tinkering thus contrasts 

with more deliberate activity towards conceptual understanding of how some phenomenon works 

or more pre-planned approaches to design. Some researchers have argued that tinkering is an 

unproductive process because it does not always lead to progress and/or conceptual learning.4,5 

Others view it as productive for students’ learning and for generation of novel solutions.1-3 In this 

paper, we do a fine-timescale analysis of the process of tinkering to speak to this tension about 

the productivity (or unproductivity) of tinkering for novice designers and programmers. We 

claim that tinkering, or ad-hoc sense-making, can play a productive role in making progress 

towards design-activity goals.  We argue for a more nuanced understanding of the benefits and 

drawbacks of tinkering. 
 

Tinkering versus Deliberate Sensemaking 

We define tinkering as both a process and an orientation.  Processes of tinkering are often messy 

to identify, but we operationalize tinkering to be an ad-hoc trial and error.1,5  Tinkering involves 

the rapid prototyping of ideas, and information gathered during each prototype drives subsequent 

trials.  This is what Turkle and Papert describe as bricolage — a plan-as-you-go approach, which 

they contrast with a more formal, planned approach.2 We contrast tinkering with deliberate 

sensemaking, which is a more systematic and planned activity with the goal of making sense of a 

phenomenon or system.  The goal of tinkering, on the other hand, is to produce a product or 

outcome. This is not to say that conceptual sense-making and tinkering are mutually exclusive 

processes. However, in tinkering the goal of producing an outcome drives conceptual sense-

making — that is, conceptual understanding happens only in the service of the outcome, rather 

than as an end in itself.  This goal orientation in tinkering (or, at least the kinds of activities we 

are calling tinkering in this paper) contrasts other kinds of unstructured knowledge generation, 

such as play, or messing about,6 where there is no clear goal. 
 

Some researchers describe tinkering as a productive activity.  In their study of students learning 

to program, Berland et. al. situate tinkering as an essential step between the initial exploration 

phase and refinement of ideas.1  In a different vein, Turkle and Papert consider tinkering as a 

valid end-goal. They argue that some ways of knowing, such as bricolage, are more authentic in 

some situations for some people, and stress the value of multiple ways of knowing and learning 

(“epistemological pluralism” p. 161).2  They also highlight the unique affordances of tinkered 

approaches, such as helping students move past roadblocks easier.  Tinkering is also consistent 

with Roth’s description of the design process.3  He illustrates how a given design is often 

emergent through the process and context. In this framework, the artifact at a given moment is 

reflective of its’ prior states and will influence future states. 
 

Others describe tinkering as unproductive for the lack of clear aims and progress.  In a study of 

novices and experts engaged in debugging, Law argues that tinkering did more harm than good, 

introducing additional bugs, and leading to more overcorrections than in planned approaches.5  
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Yeshno and Ben-Ari also suggested that trial and error is only useful if it leads to conceptual 

learning.4  
 

In this paper, we add to this debate by providing empirical evidence that in some situations 

tinkering can play a productive role in problem solving.  Through fine timescale analysis of 

unfolding events during tinkering activities in an engineering design learning environment, we 

show how tinkering can help students make progress towards their design goals and in some 

instances, even motivate their engagement in more systematic sense-making. We also suggest 

that there is more to be gained from tinkering than possibly conceptual skills. We do not mean to 

suggest that tinkering is universally productive or universally unproductive: rather, we think that 

through fine-grained analysis of episodes of tinkering activities embedded within a broader task, 

researchers can get a better handle at how to characterize productive or unproductive tinkering 

behavior. This, in turn, can help us generate instructional strategies towards scaffolding tinkering 

behaviors in the classroom. 
 

In the following sections we describe the context of the learning environment, data collection, 

and analysis methodology. Then we present our analysis of two cases; in each case, a student 

design pair engages in tinkering behavior.  In the first case, tinkering happens to set the stage for 

more conceptual sense-making. We highlight how tinkering both encouraged productive 

engineering practices and helped students engage in sense-making.  In the second case, we 

describe an instance of less productive tinkering. Students self-generated and got stuck in an 

unachievable task, yet were still able to engage with the content in productive ways.  We then 

present interview data from one student in the second case, to illustrate how tinkering may 

interact with students’ emotional experiences.  We suggest that regardless of whether or not 

students can complete a design goal, tinkering can help students engage in productive 

disciplinary practices. 
 

Classroom Background 

We designed and ran a project-based instructional module within Summer Girls, a day-camp for 

high school students hosted by the University of Maryland.  The module was piloted in Summer 

2013, and small modifications were made and implemented in Summer 2014.  As part of the 

program, students learned to program Arduino (microcontroller) controlled robot-tanks 

(henceforth, Arduino-bot).  Roughly 1-2 hours per day were dedicated to Arduino activities, 

while the rest of the time was spent on modern physics lectures, lab tours, and demonstrations.  

The Arduino classroom was structured to have a high level of student agency.  Throughout the 

program, participants worked in groups of twos or threes through several open-ended Arduino 

design tasks before designing and completing a final project using Arduinos. Design tasks 

required students to program the Arduino-bot to perform some task such as detecting an obstacle, 

visually depicting distance from a wall, etc. The camp was co-taught by two instructors. Each 

day, there were 2-3 graduate student and undergraduate volunteers to help students with their 

projects. Students were also given a reference library of sample code, and were strongly 

encouraged to reference the internet. 
 

Methods 

Over two iterations of the summer camp, we collected interviews, coursework, and classroom 

videotapes of focal groups.  Due to limited resources, we filmed one pair in the pilot year.  In the 

second iteration, we filmed two pairs and two trios.  Interviews occurred at the beginning of the 
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camp, beginning of the second week of camp, and after camp ended.  Because interviews were 

voluntary, only two students completed all three interviews.  We collected classroom videotapes 

of all Arduino activities, and some additional in-class activities.  We also collected some written 

work, including daily written feedback, of all consenting participants.  
 

The classroom data corpus was roughly chunked, and marked for focal episodes where students 

employed multiple strategies to solve a complex problem.  For each focal episode, we 

categorized the students’ epistemic goals (e.g. completing a task, understanding a concept) and 

created more detailed content logs in which we described the kinds of approaches employed or 

proposed.  Our analysis attends to how tinkering played a role in students’ design process, in 

attempt to understand how tinkering may or may not be a productive process for students. We 

look for evidence of particular student goals through speech, gestures and actions using 

interaction analysis.7 We selected two focal episodes for this paper, to describe how the process 

of tinkering can support students in engaging in more in-depth sense-making.  The interview data 

corpus was similarly chunked and marked for instances where students described tinkering-like 

processes. Those episodes were analyzed to characterize students’ views of what they thought 

they were doing during design, and the role of tinkering-like processes.  We pair one interview 

with the second classroom focal episode, to shed light on the student’s perspective on the 

tinkering process.  Data and preliminary analyses were presented at multiple University of 

Maryland Engineering Education research group meetings, to ensure consideration of multiple 

interpretations of the data and to sort out the interpretation supported by the largest fraction of 

data.  
 

Hazel and Silver: Tinkering Leading to Conceptual Sensemaking 

Our first episode begins when Hazel and Silver (pseudonyms) had just completed a short task in 

which they were asked to write a program to make the Arduino-bot move forward until it 

detected an obstacle/wall, and then make a right turn.  Hazel and Silver initially did not program 

the Arduino-bot to stop after turning right, so after the Arduino-bot turns right it starts running 

over the keyboard until Silver grabs it. In response, they decide that they should make the robot 

stop after turning right. The goal of making the robot stop was not assigned in class, but many 

elements contributed to the reinforcement of the task as a goal.  
 

We see the goal of stopping the Arduino-bot emerge through the constraints of the physical 

space: had Silver not grabbed the bot, it would have run off the table. When Silver suggested 

modifying the task to stop the bot, Hazel immediately took up the task and offered suggestions 

for how to make it stop. Later, other groups ask them if they had been able to make it stop, 

suggesting that other groups were also adding “stopping” to their task and thus reinforcing this 

goal for Silver and Hazel. The openness of the classroom culture in which students felt 

ownership over the project task also played a role in students feeling comfortable in modifying 

the task statement to include stopping — no group asked the teacher for permission to do this. In 

that sense, that the problem statement is emergent is some indication that students are in an 

exploratory, tinkering mode in working with the robots.  
 

What follows in the next several minutes is Hazel and Silver systematically tinkering through a 

variety of strategies to make the robot stop. They first begin by adjusting the digital outputs, P
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which are set to HIGH.1 
 

Hazel: We could just, we could also make it stop. 

Silver: Oh, like after it gets to this distance. 

[Both girls lean into the computer monitor]2 

Hazel: We could turn these from, like, LOW stop.. I just changed this one to LOW. 

Silver: What was it before? 

Hazel: It was HIGH. Cause if one (inaudible)[pointing to left tread] it makes it turn right.  

Silver: Oh. So LOW means off. 

Hazel: Yeah, same with the light, and brightness. 

[Girls upload the program, and the bot moves forward, slows down, and runs into the 

box] 

Hazel: It's now trying to stop. Oh, no, no 

Silver: Oh, it's now turning LOW power to HIGH to just like- stop. Do you think that's in 

the PDF? 

Hazel: Yeah 

Silver: Yeah 

[Girls open an Ardunio bot reference sheet] 

Silver: It doesn't say how to stop. 

Hazel: No, but that's a thing we can Google. 
 

Here, tinkering supported extended engagement in the activity.  They first try something that had 

worked in a prior LED task, in which rewriting a digital output from HIGH to LOW turned off 

an LED.  They similarly change the digital settings of the motors, not knowing that LOW and 

HIGH correspond to the motors’ directions, rather than speed. This strategy leverages knowledge 

from prior tasks to predict a solution, a strategy that we see as productive, even though in this 

particular situation it does not yield the desired result for Hazel and Silver.  While drawing out 

that connection, they try to make sense of how motor treads work (getting information about the 

new system rather than simply applying knowledge from previous experience).  Their dialogue 

and gestures give evidence that they see that turning a motor off will cause a corresponding tread 

to stop moving.  After their first modification does not work, they spend a couple of minutes 

checking a reference guide and then search on Google for the solution, practices which were 

encouraged in class.  We see this utilization of available resources, without getting too bogged 

down in one resource, as productive trial-and-error.   
 

Three minutes later they isolate and execute individual lines of code (commenting out the other 

lines), to generate some knowledge about what individual commands do. We see the whole 

segment as tinkering because they do not attempt to draw out underlying principles of how the 

system works; at a later point in the episode, they even verbally acknowledge that they do not 

understand what individual functions do.  The rapid testing of activities occur in the span of 

about seven minutes.   
 

                                                
1 HIGH & LOW: refer to the state of digital pin in the output mode. A command such as digitalWrite(9,HIGH) 

would set an output voltage of 5V at the digital pin 9, while the same command with LOW instead of HIGH Will set 

that digital pin to 0V. 
2 [] Indicate actions or gestures 
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One could argue that instead of tinkering, Hazel and Silver should have systematically parsed the 

code to make sense of it right from the start; they would have had better task success and better 

learned Arduino programming through that process. We contend this notion. Hazel’s and Silver’s 

activities reflect a recognition of the variety of resources at their disposal and a systematic walk 

through the resources to try and achieve their goal. At each stage, they expanded the scope of 

their investigation: first, getting feedback from manipulating the specific system (Arduino-bot), 

then searching resources provided by the instructors, and finally searching on the internet.  

Furthermore, their activities reflect a certain level of judgment and resource management: they 

did not get fixated on any path, but quickly judged if the path would be productive, and if not, 

they switched tactic. These are all important skills in the design process, and within authentic 

engineering practice are not trumped by the value of systematic processing of the code.  The 

rapid movement from one idea to the next also reflects metacognitive time management; they do 

not get bogged down in any one strategy testing of multiple paths.  They also do some broader 

exploration of the system, doing work to understand the relevant components of the robot and 

code. 
 

We do not, however, deny that line-by-line processing of code is also a valuable epistemic 

practice. But it is also time-consuming and requires deferring the goal while one makes sense of 

the code before they are ready to manipulate it toward the desired goal. On the other hand, 

tinkering or looking up resources, if successful, can be a faster route to the solution. In that 

sense, if achieving a particular function is the primary objective (as it was in the case of Hazel 

and Silver), then starting as they did can be a productive strategy. What could make tinkering 

processes unproductive is if a student gets fixated for a long time on these earlier methods even 

when they aren’t yielding desired outcome. Hazel and Silver, however, do not get fixated.  

Indeed, when the other strategies do not meet the desired solution (how to make the bot stop) in 

about seven minutes, we see Hazel and Silver switch to engaging in a more systematic analysis 

of the code.   
   

Hazel: Okay. So we know that, that HIGH was backwards. It is the reverse of what it's 

supposed to be. 

Silver: I think the distance part is messing it up now. 

Hazel: Okay, yeah. 

Silver: Maybe take out the distance part and see if it will go for, like a, certain amount of 

time, or a certain- 

Hazel: We have a delay here, I think that's what's causing things to be weird cause- can 

we have more than one (inaudible)? No. 

Hazel: So it takes a reading. It calls it for one second. It goes forward. It… 

 

Here we see them begin synthesizing their observations into an understanding of what lines of 

code do. Hazel remarks, “So we know that, that HIGH was backwards.” We then see Hazel 

parsing each line of the code in terms of its functionality, “So it takes a reading. It calls it for one 

second. It goes forward.” However, it was while tinkering with the variables in the code that they 

explicitly problematized their lack of understand of certain functions. This awareness could have 

contributed to their getting to parsing the code to make sense of the functions.  Thus, in some 

situations, tinkering can give students a sense for where they might focus a more deliberate 

analysis. 
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Bianca and Coral: Disciplinary Practices in Tinkering 

The next clip highlights how tinkering can still engage students in productive disciplinary 

practices, even when the end-goal is not the most productive strategy. In the first week of 

Summer Girls, Coral and Bianca generate a goal of completing a 90 degree turn with the 

Arduino-bot.  This kind of precise task is often difficult to do reliably with the Arduino-bot due 

to inconsistencies in Arduino-bot’s motion over short timescales. 
 

Coral and Bianca had just completed a task of detecting and avoiding an obstacle and had moved 

onto the next task of completing a “maze.”  The “maze” was a pathway of left and right turns, 

with “walls” made of wooden blocks, and was set up in the back of the classroom, and students 

were allowed to conduct multiple trials.  Instructors had intended for students to adapt the 

obstacle avoidance code, using a closed-loop control strategy to identify walls with the distance 

sensor, and use logic control structures to determine steps.  At the start of the task, Coral says 

that the maze likely has 90 degree turns, and suggests that they first find the delay to complete a 

90 degree turn. This practice of breaking a larger task into small testable pieces is often a good 

design practice, but in this case, it ended up being part of an open-loop control strategy, where 

they pre-programmed each piece of the Arduino-bot’s motion through the maze. In general, 

open-loop strategies can be more susceptible to slight variations in the physical setting as 

compared to sensor-based closed loop strategies that can adapt to the variations. We should note, 

however, that though the participants in the camp were introduced to sensors, they hadn’t been 

explicitly instructed on the merits and demerits of open- versus closed-loop control strategies.   
 

The clip begins with Coral and Bianca trying to get the bot to make discreet turns.  Their code 

writes the Arduino-bot’s outputs to the turn settings.  In their first trial, the bot turns without 

stopping.  They are surprised, and Coral immediately picks up the (attached) USB cable and 

holds it over the bot, so it does not run over the cable.  After the first test, they realize they forgot 

a delay after the code that sets the bot to turn, so the code is continuously looping through the 

turn. 
 

Bianca: Woo! Whoa, Okay! 

Coral: Oh it's just turning around  

Coral: We forgot- Oh, we have to do a delay on it. I forgot.  Let's try a delay of like one 

second just to see. 
 

Coral suggests a delay of one second "just to see." Here, she seems to be inserting a placeholder 

value based on what she thinks is a reasonable delay.  The hedge in her utterance “just to see” 

indicates that she is probably expecting to use this as a trial run to see how the system behaves 

(getting system-specific information) when a delay is added and that she will be refining that 

value later, either systematically or through trial and error.  Because the next changes to the time 

delay become smaller and smaller, we argue that she was using a placeholder value, with the 

intention of narrowing in on the right amount.  The statement also signals that she intends to use 

the information from the next trial to inform the next modification, demonstrating the tinkering 

nature of the activity.  After uploading the new code, the Arduino-bot again spins around in 

circles, as there is no other code after each spin in the loop. 
 

Coral: It's a loop so it just keeps spinning. 

Bianca: Alright well. 
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Coral: So it spins for a second, and it reads it again and spins for another second. 

Infinitely. How do you make it stop? Oh you have to. Uhhh? 

Bianca: Then we should probably do like, ‘And then go forward.’ Instead of turn. 

Coral: Ah yeah I guess so.  
 

They use the test as a way to generate knowledge about the system - Coral realizes that the 

spinning happens because the code runs through the turn and loops again.  Bianca then modifies 

their goal to now include a right spin and forward motion, which is necessary for them to be able 

to see if they have a satisfactory spin.  This instance is similar to what Turkle and Papert describe 

“a collaborative venture with the machine (p. 136),” treating the mistake as a part of one’s 

navigation, rather than a bug.  Bianca adds several more lines of code to have the bot move 

forward after it turns.  The bot successfully loops through the turn and forward motion, even 

though the turn is not 90 degrees. 
 

Coral: We have to try and figure out what the angle is so- 

Bianca: It was a little bit more than 90 so 

Coral: So let's say it's probably about like 

Bianca: It's like 135, so we need it to be like 45 degrees less 

Coral: Right. So change it to like- 

Bianca: Should we change the delay to - 

Coral: Oh yeah you change the delay to like, 750. Wanna try that? 

 

In this segment, they move from one aspect of their goal, getting the bot to spin and move 

forward, to getting the timing of the spin.  The pair then spends almost four minutes adjusting 

and re-adjusing the delay over several trials, making smaller and smaller changes. In one run, the 

bot turns 90 degrees on the first turn, but in the second turn, it turns more than 90 degrees. 

Bianca starts to notice an inconsistency in how the bot runs. 
 

Bianca: Yeahh! That's like perfect. But how come when it does it the second time it 

doesn't? 

Coral: I think it was the cord. I think the cord was pulling on it. 

[Coral removes cord and runs again. The bot keeps looping through the turn and forward 

motion] 

Coral: Oh that's a tiny bit more than 90 I think. 

Bianca: Why? 

Coral: See? Now that was 90!  And that was a tiny bit more than 90? 

Bianca: Why is it so inconsistent? 

Coral: So it went from like here to like 

Bianca: Yeah. 

Coral: It probably like, it's probably 775. 

Bianca: Or maybe we should make it like 780. 
 

In this clip, Bianca notices that the bot doesn’t turn for the same amount in each loop. Coral at 

first suggests taking out the USB cord, attending to how the physical setup could be causing 

variability in the motion.  Bianca makes a bid to understand why it's so inconsistent, but they 

revert back to fine-tuning the delay.  The period of rapid testing ends when Coral decides to look 

at the maze. She briefly consults with a classroom helper. 
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Coral: We're figuring out 90 degree turns 

Helper: Awesome. 

Coral: I hope the maze has 90 degree turns. 

Bianca: Yeah that would be, it should be. 

Coral: Is the maze up? Do you know? 

Helper: I think so. 

[Bianca uploads and runs another iteration] 

Coral: It's a little bit- 

Bianca: Why? 

Coral: Cause like if starts like straight, it's pretty close. 

Bianca: It's still gonna run into the wall though. 

Coral: Well for now, we should probably actually like look at the maze. I'm gonna go- 

[Coral gets up] 

[Bianca types and tests new values on her own silently] 
 

At the end of this clip, Coral goes to look at the maze while Bianca continues to try to fine-tune 

the delay.  Revisiting and adjusting the problem while designing solutions is a productive 

practice.8 Coral seems to be making a bid at the end for getting the turn “pretty close,” because it 

might still go through the maze. Their approach to the maze ends up being an open-loop set of 

instructions to turn and go straight, rather than developing an algorithm using a distance sensor.  

Only toward the end of the task, they incorporate the distance sensor into the first turn and the 

end of the maze. 
 

In some ways, their goal and approach to the task was unproductive. In it, Coral and Bianca are 

trying to fine-tune a time delay to get the Arduino-bot to make 90 degree turns. This goal is 

nearly impossible to accomplish based on the inconsistencies of the bot, though they do not 

know that when they start to work toward it. Despite Bianca noting the inconsistency of bot's 

turns, they still stay stuck on trying to accomplish this goal, rather than shift strategies.  We 

suggest that the unproductive aspects of their activity lay in their goal choice; however, tinkering 

in itself is neither productive nor unproductive. 
 

Still, this episode shows how engagement in tinkering enables them to engage in good design 

practices. They engage in multiple troubleshooting strategies, without getting too bogged down. 

For example, while working on the subgoal, they start their delay by using placeholder values, to 

see if their code generally does what they want it to. They also adapt their goal to have the 

Arduino-bot turn and run forward, based on information gathered from the system in their 

tinkering. This kind of goal adaptation frames their non-working code as a building block, rather 

than a mistake.  They also try reducing error by taking into account physical features of the 

system (moving the USB cord) and modifying the code itself.  
 

Valuing Tinkering for Affective Engagement 

Now we turn to excerpts from our interview with Coral to illustrate how tinkering is also an 

emotional experience for some students; and their emotions can be coupled with their sense of 

whether the tinkering was productive or not. Coral describes tinkering-like practices as 

productive for design, and sees managing frustration as a part of tinkering. In an interview in the 

middle of camp, Coral discussed the nature of design, and how design requires frequent testing 
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of different solutions. At the time of the interview, Coral and Bianca had just begun their final 

project. Their project, a walking and dancing baby, required coordination of two separate 

Arduino-bots as the feet of the baby. 
 

Interviewer: How are you ensuring that the two robots will work together? 

Coral: So, we do have two programs for the two. But we know that from today we saw 

that one seemed to be moving a little bit faster than the other. So we were thinking of 

trying it just at a lower motor speed or possibly changing out the batteries of the one that 

was moving slower since we have been using those a lot and the other ones were like new 

batteries. So we thought about that and then also, just testing, a lot a lot of testing. and 

like slightly altering the program here but not too much where it'll make a drastic change 

and you have to alter the other one and yeah. 

Interviewer: So like, making little changes, seeing how it works, making a little more 

changes, seeing how it works. 

Coral: Yeah. And just like, not getting frustrated, being like, this is going to be difficult to 

move the two and we both understand that, so it's just fun and go from there. 
 

Though Coral doesn’t explicitly say “tinkering,” her description of testing aligns with tinkering. 

Testing itself isn't necessarily tinkering; testing could also be part of more systematic data 

collection. We suggest that to her, testing is what we call tinkering, because testing occurs in the 

pursuit of accomplishing a goal, rather than drawing out underlying concepts. Her description of 

testing also explicitly includes more than one strategy, lowering speed and changing batteries, 

and using multiple strategies is also a feature of tinkering.  Coral brings out managing frustration 

as an important component of doing design. She elaborates more on frustration. 
 

Interviewer: What happens when things aren't working? You're feeling frustrated? 

Coral: I think it's definitely like, you're going to get frustrated and I've done enough with 

robotics to know that it's a frustrating task sometimes. But you just have to kinda know 

that like, if I don't change it, it's not going to change, and if you want that end goal, or if 

you want it to accomplish what you want it to accomplish, it's just gonna take time. And 

testing different things, trying out different values, different codes maybe, different ideas, 

taking a second to like, just leave it and then just letting your mind play around with 

different ideas and just stepping away from the project for a second, and coming back to 

it. So, I mean, I think it's one of those things where, I do get frustrated but I don't think 

it's overwhelming where I ever really feel like ‘Okay, that's it, I'm done.’ 
 

We also see a little more of what that testing process looks like for Coral. "Testing different 

things, trying out different values, different codes maybe, different ideas," reflects using multiple 

strategies to achieve a result. To Coral, this process is not only helpful, she sees it as an integral 

part of doing design.  She accepts frustration as part of the design process and says that part of 

not letting the frustration turn into an obstacle to progress is to keep an eye on the goal you want 

to achieve and taking a break when needed. We can also see Coral as suggesting that the multiple 

quick moves that tinkering allows, including making quick changes and trying out new ideas 

could potentially alleviate frustration when something isn’t working. The evidence to fully 

support this interpretation is thin, but points to the need for investigating how students’ tinkering 

practices are coupled with their local emotions, which could impact their engagement with 

design. 
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Discussion 

Though tinkering may not lead to generalizable content learning, we argue that it often has value 

as an engineering disciplinary practice.  This work sheds light on how tinkering emerges in the 

design process, the ways in which tinkering might be productive for design, and how tinkering 

might impact student engagement. 
 

In the case of Hazel and Silver, tinkering was a productive part of their process and helped them 

engage in more systematic unpacking of concepts.  While tinkering, they utilized resources 

without getting too bogged down in one strategy, used multiple iterations to build specific 

knowledge about the system, and drew connections across tasks.  They also identified aspects of 

code that they did not understand, and later did more systematic analysis of those areas. 

 

Bianca and Coral tinkered through a self-generated goal that was part of a larger, unproductive 

open-loop control strategy.  They still engaged in many good practices while tinkering. For 

example, they adjusted the goal based on the system, used placeholder values, and revisited the 

problem in the process of designing a solution.  Interview data with Coral also pairs tinkering 

with positive affect related to lowered frustration, and some acceptance of frustration as being 

part of the tinkering process.  The example of Bianca and Coral raises questions about what to do 

when students engage in productive practices yet are following an overall unproductive strategy.  

One could imagine steering students toward the more productive or more sophisticated strategy 

(such as a sensor-based closed-loop control strategy in the case of Coral and Bianca), and while 

we can envision that working out well, we can also envision situations in which such an 

intervention might lead students down the path of just doing what the instructor tells them to do. 

The specifics of enacting such an instructional intervention would matter greatly in how 

subsequent student action plays out. This example draws our attention to the different grain-sizes 

at which we might attend to when valuing or critiquing students’ design thinking.    
 

To summarize, we argue that students’ tinkering behaviors can have a productive role in the 

engineering design classroom and more research is needed on understanding the various ways in 

which students take up tinkering during engineering design activities.   
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