Skip to main content
Other
Bandstructure Effects in Silicon Nanowire Electron Transport
Birck and NCN Publications
  • Neophytos Neophytou, Purdue University - Main Campus
  • Abhijeet Paul, Purdue University - Main Campus
  • Mark S. Lundstrom, Purdue University - Main Campus
  • Gerhard Klimeck, Purdue University - Main Campus
Abstract

Bandstructure effects in the electronic transport of strongly quantized silicon nanowire field-effect-transistors (FET) in various transport orientations are examined. A 10-band sp3d5s∗ semiempirical atomistic tight-binding model coupled to a self-consistent Poisson solver is used for the dispersion calculation. A semi-classical, ballistic FET model is used to evaluate the current-voltage characteristics. It is found that the total gate capacitance is degraded from the oxide capacitance value by 30% for wires in all the considered transport orientations ([100], [110], [111]). Different wire directions primarily influence the carrier velocities, which mainly determine the relative performance differences, while the total charge difference is weakly affected. The velocities depend on the effective mass and degeneracy of the dispersions. The [110] and secondly the [100] oriented 3 nm thick nanowires examined, indicate the best ON-current performance compared to [111] wires. The dispersion features are strong functions of quantization. Effects such as valley splitting can lift the degeneracies particularly for wires with cross section sides below 3 nm. The effective masses also change significantly with quantization, and change differently for different transport orientations. For the cases of [100] and [111] wires the masses increase with quantization, however, in the [110] case, the mass decreases. The mass variations can be explained from the non-parabolicities and anisotropies that reside in the first Brillouin zone of silicon.

Keywords
  • Anisotropy,
  • bandstructure,
  • effective mass,
  • injection velocity,
  • MOSFETs,
  • nanowire,
  • nonparabolicity,
  • quantum capacitance,
  • tight binding,
  • transistors
Date of this Version
6-15-2008
Citation
IEEE Transactions on Electron Devices, Vol. 55, No. 6, June 2008 P. 1286.
Citation Information
Neophytos Neophytou, Abhijeet Paul, Mark S. Lundstrom and Gerhard Klimeck. "Bandstructure Effects in Silicon Nanowire Electron Transport" (2008)
Available at: http://works.bepress.com/gerhard_klimeck/215/