University of Massachusetts Amherst

From the SelectedWorks of Gerald Alvin Peterson

April, 1993

Measurements of transverse electron scattering from the deuteron in the threshold region at high momentum transfers

M Frodyma, University of Massachusetts - Amherst R G Arnold D Benton, University of Massachusetts - Amherst P E Bosted L Clogher, et al.

Available at: https://works.bepress.com/gerald_peterson/11/

Measurements of transverse electron scattering from the deuteron in the threshold region at high momentum transfers

M. Frodyma,^{(2),*} R. G. Arnold,⁽¹⁾ D. Benton,^{(1),†} P. E. Bosted,⁽¹⁾ L. Clogher,⁽¹⁾ G. Dechambrier,⁽¹⁾ A. T. Katramatou,⁽¹⁾ J. Lambert,^{(1),‡} A. Lung,⁽¹⁾ G. G. Petratos,^{(1),§} A. Rahbar,⁽¹⁾ S. E. Rock,⁽¹⁾ Z. M. Szalata,⁽¹⁾ B. Debebe,⁽²⁾ R. S. Hicks,⁽²⁾ A. Hotta,^{(2),**} G. A. Peterson,⁽²⁾ R. A. Gearhart,⁽³⁾ J. Alster,⁽⁴⁾ J. Lichtenstadt,⁽⁴⁾ F. Dietrich,⁽⁵⁾ and K. van Bibber⁽⁵⁾

⁽¹⁾The American University, Washington, D.C. 20016
 ⁽²⁾University of Massachusetts, Amherst, Massachusetts 01003
 ⁽³⁾Stanford Linear Accelerator Center, Stanford, California 94309
 ⁽⁴⁾Tel Aviv University, Tel Aviv, Israel
 ⁽⁵⁾Lawrence Livermore National Laboratory, Livermore, California 94550

(Received 7 October 1992)

Deuteron electrodisintegration cross sections near 180° have been measured near breakup threshold for the four-momentum transfer squared Q^2 range 1.21–2.76 (GeV/c)². Evidence for a change of slope in the cross section near $Q^2=1$ (GeV/c)² has been obtained. The data are compared to nonrelativistic calculations, which predict a strong influence of meson-exchange currents. The data are also compared to a hybrid quark-hadron model. None of these calculations agrees with the data over the entire measured range of Q^2 . The ratio of inelastic structure functions $W_1(Q^2, E_{np})/W_2(Q^2, E_{np})$ is extracted from the present results and previous forward angle data. No prediction is in good agreement with the deduced ratios at small relative energy E_{np} .

PACS number(s): 25.10.+s, 25.30.Fj, 25.30.Dh, 27.10.+h

I. INTRODUCTION

The electrodisintegration of the deuteron near breakup threshold provides one of the most compelling tests of our understanding of the role of meson-exchange currents in nuclei. Close to threshold, the dominant mechanism for electrodisintegration is by a spin-flip magnetic dipole transition from the ${}^{3}S_{1} + {}^{3}D_{1}$ ground state to an unbound ${}^{1}S_{0}$ state, a transition that can be most selectively studied by electron scattering at extreme backward angles. This paper presents the results of measurements of the threshold electrodisintegration cross section at 180°, in the region where the relative kinetic energy E_{np} of the outgoing nucleons in the center-of-mass system is less than 20 MeV. Previous measurements [1] of this cross section extended to a squared four-momentum transfer $Q^2 = 1.1$ (GeV/c)². Our data span the range from $Q^2 = 1.21$ to 2.76 (GeV/c)², a region where the meson-exchange representation of the nucleon-nucleon force is expected to have diminishing applicability. The results presented here have been previously published [2]. This paper describes the experiment in more complete detail, particularly with regard to the procedures employed for extracting the average threshold cross sections. Additional information is provided on a comparison of $W_1(Q^2, E_{np})$, measured in the present experiment, with values of $W_2(Q^2, E_{np})$ from other experiments.

The one-photon-exchange impulse-approximation (IA) diagram is shown in Fig. 1 with and without final-state interactions (FSI) between the two nucleons. Calculations in the IA predict a diffraction minimum at four-momentum transfer squared $Q^2 \approx 0.5$ (GeV/c)², in strong disagreement with existing electrodisintegration data [1].

Significant improvement is found when mesonexchange currents (MEC) are included. Three important MEC interactions involving pions are shown in Fig. 2. Nonrelativistic predictions including only single pion MEC's account [3] for the discrepancy at $Q^2 \approx 0.5$, but are inadequate at higher Q^2 , where short-range effects exert a large influence. Above $Q^2 \approx 1$ (GeV/c)², nonrelativistic predictions have a large model dependence, yielding order-of-magnitude variations in the calculated cross sections. The electromagnetic form factors used in the meson-nucleon coupling of the MEC contribute strongly to this model dependence. Whether calculations should use the Sachs $G_E(Q^2)$ or the Dirac $F_1(Q^2)$ form factor has been an issue of some debate [4-6]. Because previous data [1] were better described by models using F_1 , theoretical arguments were advanced [5] in favor of F_1 . Subsequently, it was shown [4,6] that these arguments depend on strong, unproven assumptions and in some cases have inconsistencies.

Other sources of uncertainty are the nucleon-nucleon (NN) potential [7,8], the πNN vertex form factors, and

^{*}Present address: Saddleback College, Mission Viejo, CA 92691.

[†]Present address: University of Pennsylvania, Philadelphia, PA 19104.

[‡]Permanent address: Georgetown University, Washington, D.C. 20057.

[§]Present address: Stanford Linear Accelerator Center, Stanford, CA 94309.

^{**}Permanent address: School of Physics, Shizuoka University, Shizuoka, 422 Japan.

FIG. 1. An incident electron exchanges a virtual photon: (a) in the plane-wave impulse approximation (PWIA) with no final-state interactions; (b) in the distorted-wave impulse approximation (DWIA), in which the nucleons interact after the photon exchange.

the nucleon electromagnetic form factors. More accurate measurements [9] of the neutron electric form factor $G_{En}(Q^2)$ have recently become available, substantially reducing this last source of uncertainty.

The strong model dependence at high Q^2 has led to an unsatisfactory situation. There appear to be several plausible combinations of theoretical inputs [4], but none of these is in good agreement with all electrodisintegration data for $Q^2 \leq 2.76$ (GeV/c)². Such observations underscore the need for a completely relativistic theory in which the number of ad hoc choices is minimized.

Another class of predictions for deuteron electrodisintegration are exploratory investigations [10-12] known as hybrid quark-hadron models. In these models the deuteron is treated as a six-quark cluster when the NN separation is less than a cutoff radius. Unfortunately, the models are quite sensitive to the value of the radius, which is not strongly constrained. These models also yield orderof-magnitude variations in the predicted cross sections at high Q^2 .

This paper is organized as follows. Relevant kinematic and cross-section formulas are given in Sec. II. Since the experimental apparatus has been discussed elsewhere, only a brief overview will be given in Sec. III. The main steps of the data analysis are discussed in Sec. IV. A comparison of the electrodisintegration data with several nonrelativistic predictions is given in Sec. V, and concluding remarks are given in Sec. VI.

II. KINEMATICS AND CROSS SECTIONS

In the formulas of this section the electron rest mass is neglected. The four-momentum transfer squared Q^2 is given by

$$Q^2 = 4EE'\sin^2(\theta/2) , \qquad (1)$$

FIG. 2. Three contributions to the MEC in electron scattering: (a) single-pion MEC; (b) pair production; (c) Δ resonance production.

where E and E' are the incident and scattered electron energies, and θ is the electron scattering angle in the laboratory system. The invariant mass squared W^2 of the two-nucleon recoil system in Fig. 1 can be written as

$$W^2 = M_D^2 + 2M_D v - Q^2 , \qquad (2)$$

where M_d is the deuteron mass, and v=E-E'. For elastic scattering, $W^2=M_D^2$ and $Q^2=2M_Dv$. The scaling variable x_D is given by

$$x_D = \frac{Q^2}{2M_D \nu} , \qquad (3)$$

which is near unity for threshold-inelastic data. A related scaling variable [13] ω' can be written as

$$\omega' = 1 + \frac{W_N^2}{Q^2} , \qquad (4)$$

where W_N^2 is obtained by substituting the nucleon mass M_N in Eq. (2) for the deuteron mass. Both x_D and ω' are used in the data analysis discussed below.

In the threshold inelastic region, the excitation energy ω is small compared to the deuteron mass and is given by $\omega = W - M_D$. The scattered electron energy is given to first order in ω/M_D by

$$E' = \frac{E - \omega}{R_E} , \qquad (5)$$

where

$$R_E = 1 + \frac{2E\sin^2(\theta/2)}{M_D} \tag{6}$$

is the recoil factor.

The electron spectrometer central momentum was set at the deuteron elastic peak for the threshold inelastic data taking. It is useful to express E' in terms of the momentum shift δ relative to the deuteron elastic peak as

$$E' = \frac{E}{R_E} (1+\delta) . \tag{7}$$

The kinetic energy E_{np} of an outgoing nucleon in the neutron-proton rest frame is given to first order in ω/M_D by

$$E_{np} = \omega - \omega_0 , \qquad (8)$$

or in terms of E' as

$$E_{np} = E - R_E E' - \omega_0 , \qquad (9)$$

where $\omega_0 = 2.23$ MeV is the deuteron binding energy. The inelastic cross section is written as

$$\frac{d^{2}\sigma}{d\Omega \, dE'} = \frac{\alpha^{2}}{4E^{2}} \sin^{4} \left[\frac{\theta}{2} \right] \left[W_{2}(\nu, Q^{2}) \cos^{2} \left[\frac{\theta}{2} \right] + 2W_{1}(\nu, Q^{2}) \sin^{2} \left[\frac{\theta}{2} \right] \right],$$
(10)

where $W_1(v, Q^2)$ and $W_2(v, Q^2)$ are the inelastic structure functions. The inelastic data [2,14] from the present experiment provide new measurements of $W_1(v, Q^2)$, since all data were taken near 180°. Note that W_1 and W_2 may equivalently be written as functions of any pair of variables such as E_{np} and x_D , which depend only on Q^2 and v.

III. OVERVIEW OF THE EXPERIMENT

The experimental apparatus has been discussed in detail elsewhere [15,16], so only a brief overview will be given here. The new threshold inelastic data were obtained during a 180° electron scattering experiment in which measurements were also made of quasielastic scattering [14,17], as well as elastic electron-deuteron [15,18] and electron-proton [15,17] scattering. The threshold inelastic data, which only used the 180° spectrometer, were taken simultaneously with the elastic *ed* measurements, in which deuterons recoiling near 0° were detected in coincidence with scattered electrons using a separate spectrometer.

Experimental conditions such as the spectrometer design could not be simultaneously optimized for the elastic, quasielastic, and threshold inelastic data taking. The elastic data were given priority in order to measure the magnetic form factor of the deuteron. Since elastic events were tagged by detecting recoil deuterons, high energy resolution for the electron spectrometer was not required. Inelastic events could not be tagged by detecting recoil protons in coincidence with scattered electrons since there was a large background of protons from other processes. Also, most of the protons fell outside the recoil spectrometer acceptance. Due to the small elastic cross section, long liquid-deuterium targets and spectrometers having a large angular acceptance were needed. These properties compromised the resolution in E' to the extent that the corresponding resolution in E_{np} was as large as 20 MeV [see Eq. (9)] for the 20-cm liquid targets. Because of this, the data were analyzed using a resolution unfolding procedure in order to make comparisons with theoretical predictions, which are generally constrained

to a small E_{np} range near threshold.

The experiment, identified as NE4, was carried out at the Stanford Linear Accelerator Center (SLAC) in two separate running periods. These occurred during the summer of 1985 (NE4-I) and spring of 1986 (NE4-II), respectively. Data were taken with electron beams of energy E = 0.734, 0.843, 0.885, 0.934, 1.020, 1.102, 1.201, and 1.279 GeV (see Table I), produced by the Nuclear Physics Injector [19] with a maximum intensity of 5×10^{11} electrons per 1.6 μ sec pulse at a repetition rate of 150 Hz. These beam energies correspond to Q^2 values at thresholds of 1.21, 1.49, 1.61, 1.74, 1.99, 2.23, 2.53, and 2.76 (GeV/c)², respectively. Energy-defining slits limited the uncertainty in E to $\pm 0.35\%$.

The electron beams were transported to a 180° spectrometer system [16] in end station A. The entire spectrometer system is shown in Fig. 3. A series of three bending magnets B_1-B_3 transported incident electrons toward the target. Dipole B_2 was symmetrically located between B_1 and B_3 and was remotely movable along a line perpendicular to the electron beam. This construction accommodated the different bending angles required for each beam energy. The incident beam then passed through the quadrupole triplet Q_1-Q_3 into 10- or 20-cm-long liquid-deuterium cells.

The liquid-deuterium and hydrogen target cells were machined out of an aluminum casting, and each 20-cmlong cell included two aluminum end caps of thickness 3.44×10^{-2} g/cm² through which the incident beam passed. Electrons scattered from the target end caps represented the largest expected source of background, hence the end caps were made as thin as possible while safely supporting 2 atm of pressure from the liquid deuterium within. Two aluminum hymens, 6.85×10^{-3} g/cm² thick, isolated the target vacuum chamber and a wire array of average thickness 1.4×10^{-2} g/cm² was used to measure the beam position. The deuteron spectrum at $Q^2 = 1.21$ (GeV/c)² used a 10-cm target cell with 1.92×10^{-2} g/cm² thick end caps, while all other threshold data were taken with the 20-cm cell.

Electrons scattered near 180° returned through $Q_1 - Q_3$ were momentum-dispersed by spectrometer dipoles B_3

FIG. 3. The 180° spectrometer system of this experiment. The system is located between the SLAC 8- and 20-GeV/c spectrometers. The elements B_1 to B_8 are dipole magnets, and Q_1-Q_6 are quadrupoles. Also shown are the detectors, target chamber, beam dump, and the concrete and iron shielding.

TABLE I. Cross sections per deuteron nucleus for inelastic electron-deuteron scattering near breakup threshold. The beam energy E and relative energy E_{np} are evaluated at the center of the target. The errors include statistical and systematic contributions added in quadrature.

E = 0.734 GeV		E = 0.843 GeV		E =	=0.885 GeV	E = 0.934 GeV	
E_{np}	$d^2\sigma/d\Omega dE_{np}$	E_{np}	$d^2\sigma/d\Omega dE_{np}$	E_{np}	$d^2\sigma/d\Omega dE_{np}$	E_{np}	$d^2\sigma/d\Omega dE_{np}$
(MeV)	(fb/sr MeV)	(MeV)	(fb/sr MeV)	(MeV)	(fb/sr MeV)	(MeV)	(fb/sr MeV)
-22.4	0.12+0.29	-254	0.01+0.06	-26.6	-0.02 ± 0.03	- 27 9	-0.02 ± 0.03
-20.6	0.03 ± 0.29	-23.3	0.01 ± 0.06	-24.4	-0.01 ± 0.04	-25.6	0.02 ± 0.03
-18.7	-0.49 ± 0.25	-21.2	-0.01 ± 0.06	-22.2	-0.07 ± 0.04	-23.3	-0.01 ± 0.03
-16.9	-0.81 ± 0.31	- 19.1	-0.05 ± 0.06	-20.0	-0.03 ± 0.04	-20.9	0.01 ± 0.03
-15.1	0.16±0.35	-17.0	$0.03 {\pm} 0.07$	-17.7	0.03 ± 0.04	-18.6	0.00 ± 0.03
-13.2	$-0.32{\pm}0.34$	- 14.9	$0.05 {\pm} 0.08$	-15.5	$-0.04{\pm}0.04$	-16.2	0.01 ± 0.03
-11.4	$-0.18{\pm}0.41$	-12.8	$-0.05{\pm}0.07$	-13.3	-0.05 ± 0.04	-13.9	0.01 ± 0.03
-9.6	0.27±0.49	-10.7	0.01 ± 0.08	-11.1	-0.08 ± 0.06	-11.6	0.02 ± 0.04
-7.7	0.54±0.59	-8.6	$0.00{\pm}0.10$	-8.9	$0.07 {\pm} 0.09$	-9.2	0.04 ± 0.04
-5.9	$0.52{\pm}0.56$	-6.4	0.04±0.13	-6.7	0.09±0.10	-6.9	$0.09 {\pm} 0.05$
-4.1	0.84±0.59	-4.3	$0.14{\pm}0.14$	-4.4	$0.32 {\pm} 0.12$	-4.6	0.12 ± 0.07
-2.2	$2.30{\pm}0.64$	-2.2	$0.52{\pm}0.17$	-2.2	0.29±0.12	-2.2	$0.21 {\pm} 0.08$
-0.4	$0.53 {\pm} 0.56$	-0.1	$0.57{\pm}0.18$	0.0	0.55 ± 0.14	0.1	$0.33 {\pm} 0.08$
1.4	$2.14{\pm}0.73$	2.0	0.62±0.19	2.2	$0.77 {\pm} 0.14$	2.4	$0.42 {\pm} 0.07$
3.3	$3.43 {\pm} 0.87$	4.1	$1.00 {\pm} 0.19$	4.4	0.93±0.15	4.8	$0.43 {\pm} 0.07$
5.1	3.14 ± 1.04	6.2	$1.50 {\pm} 0.21$	6.6	0.97 ± 0.17	7.1	$0.56 {\pm} 0.08$
6.9	4.86 ± 1.11	8.3	1.24±0.20	8.8	1.02 ± 0.19	9.4	$0.64{\pm}0.10$
8.8	5.71 ± 1.18	10.4	$1.45 {\pm} 0.26$	11.1	$1.44{\pm}0.24$	11.8	$0.72 {\pm} 0.12$
10.6	7.99 ± 1.29	12.5	$1.69 {\pm} 0.31$	13.3	$1.74 {\pm} 0.26$	14.1	$0.79 {\pm} 0.12$
12.4	7.44 ± 1.27	14.6	$1.88{\pm}0.37$	15.5	$1.85 {\pm} 0.27$	16.5	1.04 ± 0.13
14.3	9.61±1.45	16.7	$3.12 {\pm} 0.40$	17.7	$2.25 {\pm} 0.29$	18.8	1.15 ± 0.14
16.1	9.98 ± 1.55	18.9	$2.77 {\pm} 0.35$	19.9	$2.53 {\pm} 0.31$	21.1	1.01 ± 0.14
17.9	12.10 ± 1.76	21.0	3.21±0.37	22.1	2.68 ± 0.32	23.5	1.41 ± 0.17
19.8	$13.80{\pm}1.83$	23.1	$2.95 {\pm} 0.33$	24.3	2.97 ± 0.33	25.8	$1.47{\pm}0.18$
21.6	16.02 ± 1.89	25.2	$3.58 {\pm} 0.36$	26.6	$3.53 {\pm} 0.35$	28.1	1.82 ± 0.20
23.5	16.99±1.91	27.3	4.44 ±0.40	28.8	3.67±0.35	30.5	$1.84{\pm}0.20$
F = 1.020 GeV		F = 1.102 GeV		E = 1.201 G-W			
F =	= 1 020 GeV	F	-1 102 CoV	F	1 201 C .X		1.070 0 11
E =	= 1.020 GeV $d\sigma/d\Omega dE_{m}$	E =	= 1.102 GeV $d\sigma/d\Omega dE$	E = F	= 1.201 GeV $d\sigma/d\Omega dF$	E = E	= 1.279 GeV
$E = E_{np}$ (MeV)	= 1.020 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV)	$E = E_{np}$ (MeV)	= 1.102 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV)	$E = E_{np}$ (MeV)	= 1.201 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV)	$E = E_{np}$ (MeV)	$= 1.279 \text{ GeV}$ $\frac{d\sigma}{d\Omega} \frac{dE_{np}}{dE_{np}}$ (fb/sr MeV)
$E = \frac{E_{np}}{(\text{MeV})}$	= 1.020 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV)	$E = \frac{E_{np}}{(\text{MeV})}$	= 1.102 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV)	$E = \frac{E_{np}}{(\text{MeV})}$	= 1.201 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV)	$E = \frac{E_{np}}{(\text{MeV})}$	= 1.279 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV)
$E = \frac{E_{np}}{(MeV)}$	= 1.020 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.038±0.012 0.001±0.013	$E = \frac{E_{np}}{(MeV)}$ -32.6	= 1.102 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.001±0.007 0.002 + 0.002	$E = \frac{E_{np}}{(MeV)}$	= 1.201 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.000±0.004	$E = \frac{E_{np}}{(\text{MeV})}$	$= 1.279 \text{ GeV}$ $\frac{d\sigma}{d\Omega} \frac{dE_{np}}{dE_{np}}$ (fb/sr MeV) -0.002 ± 0.002
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2	= 1.020 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.038±0.012 0.001±0.013 0.006±0.012	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 27.0	= 1.102 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.001±0.007 0.003±0.008 0.007 + 0.010	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3	= 1.201 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.000±0.004 -0.004 ± 0.004	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2	$ \begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ -0.002 \pm 0.002 \\ -0.005 \pm 0.002 \end{array} $
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6	= 1.020 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.038±0.012 0.001±0.013 0.006±0.013 0.006±0.013	$E = \frac{E_{np}}{(MeV)}$ - 32.6 - 29.8 - 27.0	= 1.102 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.001±0.007 0.003±0.008 0.007±0.010 0.001±0.002	$E = \frac{E_{np}}{(MeV)}$ - 35.3 - 32.3 - 29.3	$= 1.201 \text{ GeV} \frac{d\sigma / d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{0.000 \pm 0.004}{0.004 \pm 0.004} 0.007 \pm 0.006 \\ 0.007 \pm 0.007 \\ 0.007 \pm 0.006 \\ 0.007 \pm 0.007 \\ 0.007 \pm 0.007 \\ 0$	$E = \frac{E_{np}}{(MeV)}$ - 37.4 - 34.2 - 31.0	$= 1.279 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} - 0.002 \pm 0.002 - 0.005 \pm 0.002 0.000 \pm 0.003 $
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{0.038\pm0.012}{0.001\pm0.013} 0.006\pm0.013} -0.006\pm0.013 0.014\pm0.018 \\ 0.014\pm0.018 \\ 0.018\pm0.018 \\ 0.008\pm0.018 \\ 0.018\pm0.018 \\$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 21.5	= 1.102 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.001±0.007 0.003±0.008 0.007±0.010 -0.001±0.009 0.000±0.009	$E = \frac{E_{np}}{(MeV)}$ - 35.3 - 32.3 - 29.3 - 26.3 20.3	$= 1.201 \text{ GeV} \frac{d\sigma / d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{0.000 \pm 0.004}{0.007 \pm 0.004} - 0.004 \pm 0.004 - 0.007 \pm 0.006 - 0.002 \pm 0.006 \\ - 0.002 \pm 0.006 \\ - 0.002 \pm 0.007 \\ - 0.004 \\ - 0.007 \\ - 0.004 \\ - 0.007 \\ - 0$	$E = \frac{E_{np}}{(MeV)}$ - 37.4 - 34.2 - 31.0 - 27.8	$= 1.279 \text{ GeV} \\ \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \\ = -0.002 \pm 0.002 \\ -0.005 \pm 0.002 \\ 0.000 \pm 0.003 \\ -0.003 \pm 0.002 \\ \end{bmatrix}$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} 0.038\pm0.012 0.001\pm0.013 0.006\pm0.013 -0.006\pm0.013 0.014\pm0.018 0.004\pm0.016 \\ 0.004\pm0.016 \\ 0.016\pm0.016 \\ 0.016\pm0.006\pm0.016 \\ 0.016\pm0.006\pm0.006 \\ 0.016\pm0.006\pm0.006 \\ 0.016\pm0.006\pm0.006 \\ 0.016\pm0.006\pm0.006\pm0.006 \\ 0.016\pm0.000\pm0.000\pm0.$	$E = \frac{E_{np}}{(MeV)}$ - 32.6 - 29.8 - 27.0 - 24.3 - 21.5 - 18.8	= 1.102 GeV $d\sigma/d\Omega dE_{np}$ (fb/sr MeV) 0.001±0.007 0.003±0.008 0.007±0.010 -0.001±0.009 0.009±0.009 0.009±0.009	$E = \frac{E_{np}}{(MeV)}$ - 35.3 - 32.3 - 29.3 - 26.3 - 23.3 - 20.2	$= 1.201 \text{ GeV} \frac{d\sigma / d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{0.000 \pm 0.004}{0.007 \pm 0.004} - 0.004 \pm 0.004 - 0.002 \pm 0.006 0.013 \pm 0.007 \\ 0.002 \pm 0.005 \\ 0.005 \pm 0.005 \\ 0.005$	$E = \frac{E_{np}}{(MeV)}$ - 37.4 - 34.2 - 31.0 - 27.8 - 24.6	$= 1.279 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} = -0.002\pm0.002 -0.005\pm0.002 0.000\pm0.003 -0.003\pm0.002 0.000\pm0.003 \\ 0.000\pm0.003 \\ 0.000\pm0.003 \\ 0.000\pm0.003 \\ 0.000\pm0.000 \\ 0.000\pm0.000 \\ 0.000\pm0.000 \\ 0.000\pm0.000 \\ 0.000\pm0.000 \\ 0.000\pm0.000 \\ 0.000\pm0.000\pm0.000 \\ 0.000\pm0.000\pm0.000 \\ 0.000\pm0.000\pm0.000 \\ 0.000\pm0.000\pm0.000\pm0.000 \\ 0.000\pm$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} 0.038\pm0.012 0.001\pm0.013 0.006\pm0.013 -0.006\pm0.013 0.014\pm0.018 0.004\pm0.016 -0.009\pm0.016$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 $	$E = \frac{E_{np}}{(MeV)}$ - 35.3 - 32.3 - 29.3 - 26.3 - 23.3 - 20.3 - 27.2	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000 \pm 0.004 - 0.004 \pm 0.004 0.007 \pm 0.006 - 0.002 \pm 0.006 0.013 \pm 0.007 0.002 \pm 0.005 \\ 0.002 \pm 0.005 \\ 0.005 $	$E = \frac{E_{np}}{(MeV)}$ - 37.4 - 34.2 - 31.0 - 27.8 - 24.6 - 21.4	$= 1.279 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} = -0.002\pm0.002 -0.005\pm0.002 0.000\pm0.003 -0.003\pm0.002 0.000\pm0.003 0.002\pm0.004 0.002\pm0.004 \\ 0.002\pm0.004 $
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(0.038\pm0.012)}{0.001\pm0.013} 0.006\pm0.013 0.006\pm0.013 0.014\pm0.018 0.004\pm0.016 -0.009\pm0.016 0.007\pm0.019 \\ 0.019$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 $	$E = \frac{E_{np}}{(MeV)}$ - 35.3 - 32.3 - 29.3 - 26.3 - 23.3 - 20.3 - 17.3 - 17.3 - 20.3	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 0.007\pm0.006 -0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 -0.002\pm0.005 0.0016\pm0.002 \\ 0.005 \\ 0.0016\pm0.005 \\ 0.001$	$E = \frac{E_{np}}{(MeV)}$ - 37.4 - 34.2 - 31.0 - 27.8 - 24.6 - 21.4 - 18.2	$= 1.279 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) = -0.002\pm0.002 -0.005\pm0.002 0.000\pm0.003 -0.003\pm0.002 0.000\pm0.003 0.002\pm0.004 0.003\pm0.004 0.003\pm0.004 \\ 0.005\pm0.004 \\ 0.0$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ -0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.03\pm0.021 \\ \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.010\pm0.014 $	$E = \frac{E_{np}}{(MeV)}$ - 35.3 - 32.3 - 29.3 - 26.3 - 23.3 - 20.3 - 17.3 - 14.3 - 11.2	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.007\pm0.006 -0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.006\pm0.008 \\ 0.006\pm0.008 \\ 0.006\pm0.008 \\ 0.006\pm0.008 \\ 0.006\pm0.008 \\ 0.008\pm0.008 \\ 0.008\pm0.008\pm0.008 \\ 0.008\pm0.008\pm0.0084 \\ 0.008\pm0.008\pm0.0084 \\ 0.008\pm0.008\pm0.0084 \\ 0.008\pm0.008\pm0.0084$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0	$= 1.279 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) = -0.002\pm0.002 -0.005\pm0.002 0.000\pm0.003 -0.003\pm0.002 0.000\pm0.003 0.002\pm0.004 0.003\pm0.004 0.005\pm0.005 0.005\pm0.005 \\ 0.005\pm0.002 \\ 0.005\pm0.002 \\ 0.005\pm0.002 \\ 0.005\pm0.002 \\ 0.005\pm0.002 \\ 0.005\pm0.002 \\ 0.005\pm0.003 \\ 0.005\pm0.005 \\ 0.005\pm0.005\pm0.005 \\ 0.005\pm0.005\pm0.005 \\ 0.005\pm0.005\pm0.005 \\ 0.005\pm0.005\pm0.005 \\ 0.005\pm0.005\pm0.005\pm0.005 \\ 0.005\pm0.005$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} 0.038\pm0.012 0.001\pm0.013 0.006\pm0.013 0.006\pm0.013 0.014\pm0.018 0.004\pm0.016 -0.009\pm0.016 0.027\pm0.019 0.023\pm0.021 0.05\pm0.024 \\ 0.05\pm$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 \\ 0.034\pm0.017 \\ 0.001 \\ $	$E = \frac{E_{np}}{(MeV)}$ - 35.3 - 32.3 - 29.3 - 26.3 - 20.3 - 17.3 - 14.3 - 11.2 - 8.2	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 - 0.004\pm0.004 - 0.002\pm0.006 - 0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 - 0.002\pm0.005 0.016\pm0.008 0.006\pm0.008 \\ 0.010\pm0.000 \\ 0.010\pm0.000 \\ 0.000\pm0.000 \\ 0.000\pm0.000\pm0.000 \\ 0.000\pm0.000\pm0.000 \\ 0.000\pm0.000\pm0.000 \\ 0.000\pm0.000\pm0.000\pm0.000 \\ 0.000\pm0.00$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8	$= 1.279 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} = -0.002 \pm 0.002 -0.005 \pm 0.002 0.000 \pm 0.003 -0.003 \pm 0.002 0.000 \pm 0.003 0.002 \pm 0.004 0.003 \pm 0.004 0.005 \pm 0.005 0.010 \pm 0.005 \\ 0.000 \pm 0.0005 \\ 0.000 $
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 \\ 0.049\pm0.019 \\ 0.019\pm0.019 \\ 0.001\pm0.009 \\ 0.009\pm0.009 \\ 0.009\pm0.009\pm0.009 \\ 0.009\pm0.009\pm0.009$ \\ 0.009\pm0.009\pm0.009\pm0.009\pm0.009	$E = \frac{E_{np}}{(MeV)}$ - 35.3 - 32.3 - 29.3 - 26.3 - 20.3 - 17.3 - 14.3 - 11.2 - 8.2 - 5.2	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 - 0.004\pm0.004 - 0.002\pm0.006 - 0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 - 0.002\pm0.005 0.016\pm0.008 0.016\pm0.008 0.010\pm0.009 0.026\pm0.010 \\ 0.016\pm0.009 \\ 0.026\pm0.010 \\ 0.010\pm0.009 \\ 0.026\pm0.010 \\ 0.000\pm0.009 \\ 0.000\pm0.000\pm0.009 \\ 0.000\pm0.00$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6	$= 1.279 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) = -0.002\pm0.002 -0.005\pm0.002 0.000\pm0.003 -0.003\pm0.002 0.000\pm0.003 0.002\pm0.004 0.003\pm0.004 0.005\pm0.005 0.010\pm0.005 0.004\pm0.006 \\ 0.005\pm0.005 \\ 0.004\pm0.005 \\ 0.005\pm0.005 \\ 0.005\pm0.005\pm0.005 \\ 0.005\pm0.005\pm0.005 \\ 0.005\pm0.005\pm0.005 \\ 0.005\pm0.005\pm0.005 \\ 0.005\pm0.005\pm0.005\pm0.005 \\ 0.005\pm0.005$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.085\pm0.032 $	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.06\pm0.021 $	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -23.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 0.007\pm0.006 -0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 \\ 0.055\pm0.012 \\ 0.055$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002\pm 0.002 \\ -0.005\pm 0.002 \\ 0.000\pm 0.003 \\ 0.000\pm 0.003 \\ 0.000\pm 0.003 \\ 0.000\pm 0.003 \\ 0.000\pm 0.004 \\ 0.005\pm 0.005 \\ 0.010\pm 0.005 \\ 0.004\pm 0.006 \\ 0.025\pm 0.007 \\ 0.025\pm 0.007 \\ 0.002\pm 0.000 \\ 0.002\pm 0.000 \\ 0.002\pm 0.000 \\ 0.000\pm 0.000\pm 0.000 \\ 0.000\pm 0.000\pm 0.000 \\ 0.000\pm 0.000\pm 0.000\pm 0.000 \\ 0.000\pm 0.$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ -0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ -0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 $	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.002\pm0.006 -0.002\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 \\ 0.042\pm0.001 \\ $	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 -10	$= 1.279 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) = -0.002\pm0.002 -0.005\pm0.002 0.000\pm0.003 -0.003\pm0.002 0.000\pm0.003 0.002\pm0.004 0.003\pm0.004 0.005\pm0.005 0.010\pm0.005 0.004\pm0.006 0.025\pm0.007 0.028\pm0.008 0.028\pm0.008 \\ 0.028\pm0.008 \\ 0.0028\pm0.008 \\ 0.0028\pm0.0084 \\ 0.0028\pm0.0084 \\ 0.0028\pm0.0084 \\ 0.0028\pm0.0084 \\ 0.0028\pm0.0084 \\ 0.002$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 \\ 0.157\pm0.026 \\ 0.157\pm0.026 \\ 0.$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 0.007\pm0.006 -0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.013 \\ 0.0$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002\pm 0.002 \\ -0.005\pm 0.002 \\ 0.000\pm 0.003 \\ 0.000\pm 0.004 \\ 0.005\pm 0.005 \\ 0.010\pm 0.005 \\ 0.004\pm 0.006 \\ 0.025\pm 0.007 \\ 0.028\pm 0.008 \\ 0.048\pm 0.009 \\ 0.042\pm 0.008 $
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.275\pm0.047 \\ 0.047 \\ 0.041 \\ 0.075\pm0.047 \\ 0.041 \\ 0.075\pm0.047 \\ 0.041 \\ 0.075\pm0.047 \\ 0.041 \\ 0.075\pm0.047 \\ 0.081 \\ 0.08$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 60	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 \\ 0.145\pm0.026 \\ 0.145\pm0.026 \\ 0.145\pm0.026 \\ 0.026 \\ 0.008\pm0.026 \\ 0.008\pm0.008\pm0.008 \\ 0.008\pm0.008\pm0.0084 \\$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -23.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 0.007\pm0.006 -0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.014 \\ 0.014$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002\pm 0.002 \\ -0.005\pm 0.002 \\ 0.000\pm 0.003 \\ 0.002\pm 0.004 \\ 0.005\pm 0.005 \\ 0.010\pm 0.005 \\ 0.001\pm 0.005 \\ 0.002\pm 0.008 \\ 0.02\pm 0.008 \\ 0.042\pm 0.008 \\ 0.04\pm 0.008 \\ $
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.183\pm0.029 \\ \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -23.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 0.007\pm0.006 -0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.016\pm0.008 0.010\pm0.009 0.036\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 \\ 0.083\pm0.016 \\ 0.016$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002\pm 0.002 \\ -0.005\pm 0.002 \\ 0.000\pm 0.003 \\ 0.000\pm 0.005 \\ 0.001\pm 0.005 \\ 0.001\pm 0.005 \\ 0.001\pm 0.005 \\ 0.002\pm 0.008 \\ 0.022\pm 0.008 \\ 0.042\pm 0.008 \\ 0.067\pm 0.010 \\ 0.041\pm 0.009 \end{array}$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.265\pm0.054 $	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 \\ \hline$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 0.007\pm0.006 -0.002\pm0.006 0.013\pm0.007 0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 \\ 0.109\pm0.018 \\ 0.018$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002\pm 0.002 \\ -0.005\pm 0.002 \\ 0.000\pm 0.003 \\ 0.000\pm 0.005 \\ 0.000\pm 0.005 \\ 0.000\pm 0.005 \\ 0.001\pm 0.005 \\ 0.001\pm 0.005 \\ 0.002\pm 0.008 \\ 0.002\pm 0.008 \\ 0.025\pm 0.007 \\ 0.028\pm 0.008 \\ 0.048\pm 0.009 \\ 0.042\pm 0.008 \\ 0.067\pm 0.010 \\ 0.041\pm 0.009 \\ 0.069\pm 0.011 \\ \hline \end{array}$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5 13.1	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.410\pm0.065 \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6 14.3	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 0.262\pm0.038 \\ \hline$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8 15.8	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.002\pm0.006 -0.002\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.008 0.016\pm0.008 0.016\pm0.008 0.010\pm0.009 0.036\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 \\ 0.100\pm0.017 \\ 0.001$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8 17.0	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002\pm 0.002 \\ -0.005\pm 0.002 \\ 0.000\pm 0.003 \\ 0.002\pm 0.008 \\ 0.004\pm 0.008 \\ 0.042\pm 0.008 \\ 0.042\pm 0.008 \\ 0.067\pm 0.010 \\ 0.041\pm 0.009 \\ 0.069\pm 0.011 \\ 0.078\pm 0.011 $
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5 13.1 15.6	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.410\pm0.065 \\ 0.438\pm0.067 \\ \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6 14.3 17.1	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 0.262\pm0.038 0.263\pm0.038 \\ \hline$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8 15.8 18.8	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.004\pm0.004 0.007\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.016\pm0.008 0.010\pm0.009 0.036\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 0.100\pm0.017 0.139\pm0.020 \\ \end{array}$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8 17.0 20.2	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002\pm 0.002 \\ -0.005\pm 0.002 \\ 0.000\pm 0.003 \\ 0.000\pm 0.010 \\ 0.07\pm 0.011 \\ 0.071\pm 0.011 \\$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5 13.1 15.6 18.2	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.014\pm0.018 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.410\pm0.065 \\ 0.438\pm0.067 \\ 0.492\pm0.066 \\ \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6 14.3 17.1 19.8	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 0.262\pm0.038 0.259\pm0.038 \\ 0.259\pm0.038 \\ \end{array}$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -23.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8 15.8 18.8 21.8	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.002\pm0.006 -0.002\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 0.100\pm0.017 0.139\pm0.020 0.150\pm0.020 \\ \hline$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8 17.0 20.2 23.4	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002\pm 0.002 \\ -0.005\pm 0.002 \\ 0.000\pm 0.003 \\ 0.000\pm 0.003 \\ 0.002\pm 0.004 \\ 0.003\pm 0.004 \\ 0.003\pm 0.004 \\ 0.005\pm 0.005 \\ 0.010\pm 0.005 \\ 0.010\pm 0.005 \\ 0.010\pm 0.005 \\ 0.004\pm 0.006 \\ 0.025\pm 0.007 \\ 0.028\pm 0.008 \\ 0.048\pm 0.009 \\ 0.042\pm 0.008 \\ 0.067\pm 0.010 \\ 0.071\pm 0.011 \\ 0.071\pm 0.011 \\ 0.062\pm 0.011 \\ 0.062\pm 0.011 \\ 0.071\pm 0.011 \\ 0.062\pm 0.011 \\ 0.062\pm 0.011 \\ 0.062\pm 0.011 \\ 0.071\pm 0.011 \\ 0.062\pm 0.011 $
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5 13.1 15.6 18.2 20.7	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.263\pm0.054 \\ 0.410\pm0.065 \\ 0.438\pm0.067 \\ 0.492\pm0.066 \\ 0.608\pm0.074 \\ \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6 14.3 17.1 19.8 22.6	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 0.262\pm0.038 0.259\pm0.038 0.334\pm0.041 $	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -23.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8 15.8 18.8 21.8 24.8	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.002\pm0.006 -0.002\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.008 0.016\pm0.008 0.016\pm0.008 0.016\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 0.100\pm0.017 0.139\pm0.020 0.150\pm0.022 \\ 0.129\pm0.022 \\ 0.129\pm0.022 \\ 0.000\pm0.00\pm0.0$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8 17.0 20.2 23.4 26.5	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002 \pm 0.002 \\ -0.005 \pm 0.002 \\ 0.000 \pm 0.003 \\ 0.000 \pm 0.010 \\ 0.071 \pm 0.011 \\ 0.071 \pm 0.011 \\ 0.062 \pm 0.011 \\ 0.091 \pm 0.014 \\ 0.001 \pm 0.$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5 13.1 15.6 18.2 20.7 23.3	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.263\pm0.054 \\ 0.410\pm0.065 \\ 0.438\pm0.067 \\ 0.492\pm0.066 \\ 0.608\pm0.074 \\ 0.679\pm0.074 \\ \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6 14.3 17.1 19.8 22.6 25.4	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 0.262\pm0.038 0.263\pm0.038 0.259\pm0.038 0.334\pm0.041 0.365\pm0.047 \\ \end{array}$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8 15.8 18.8 21.8 24.8 27.8	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.002\pm0.006 -0.002\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 0.100\pm0.017 0.139\pm0.020 0.150\pm0.022 0.162\pm0.024 $	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8 17.0 20.2 23.4 26.5 29.8	$\begin{array}{c} 1.279 \text{ GeV} \\ d\sigma/d\Omega dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ -0.002 \pm 0.002 \\ -0.005 \pm 0.002 \\ 0.000 \pm 0.003 \\ 0.000 \pm 0.013 \\ 0.071 \pm 0.011 \\ 0.071 \pm 0.014 \\ 0.100 \pm 0.015 \\ \end{array}$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5 13.1 15.6 18.2 20.7 23.3 25.8	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.263\pm0.054 \\ 0.410\pm0.065 \\ 0.438\pm0.067 \\ 0.492\pm0.066 \\ 0.608\pm0.074 \\ 0.679\pm0.074 \\ 0.639\pm0.074 \\ 0.659\pm0.074 \\ 0.659\pm0.074 $	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6 14.3 17.1 19.8 22.6 25.4 28.1	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 0.262\pm0.038 0.263\pm0.038 0.259\pm0.038 0.334\pm0.041 0.365\pm0.047 0.352\pm0.051 \\ \end{array}$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8 15.8 18.8 21.8 24.8 27.8 30.8	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.002\pm0.006 -0.002\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 0.100\pm0.017 0.139\pm0.020 0.150\pm0.022 0.162\pm0.024 0.208\pm0.027 $	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8 17.0 20.2 23.4 26.5 29.8 33.0	$\begin{array}{c} 1.279 \ \text{GeV} \\ d\sigma/d\Omega \ dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ -0.002 \pm 0.002 \\ -0.005 \pm 0.002 \\ 0.000 \pm 0.003 \\ 0.000 \pm 0.005 \\ 0.004 \pm 0.006 \\ 0.025 \pm 0.007 \\ 0.028 \pm 0.008 \\ 0.048 \pm 0.009 \\ 0.042 \pm 0.008 \\ 0.048 \pm 0.009 \\ 0.042 \pm 0.008 \\ 0.067 \pm 0.010 \\ 0.069 \pm 0.011 \\ 0.071 \pm 0.011 \\ 0.071 \pm 0.014 \\ 0.100 \pm 0.015 \\ 0.103 \pm 0.015 \\ \end{array}$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5 13.1 15.6 18.2 20.7 23.3 25.8 28.4	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.263\pm0.054 \\ 0.410\pm0.065 \\ 0.438\pm0.067 \\ 0.492\pm0.066 \\ 0.608\pm0.074 \\ 0.639\pm0.074 \\ 0.639\pm0.074 \\ 0.735\pm0.076 \\ \end{bmatrix}$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6 14.3 17.1 19.8 22.6 25.4 28.1 30.9	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 0.262\pm0.038 0.263\pm0.038 0.259\pm0.038 0.334\pm0.041 0.365\pm0.047 0.352\pm0.051 \\ 0.422\pm0.050 $	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8 15.8 18.8 21.8 24.8 27.8 30.8 33.8	$= 1.201 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.002\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 0.100\pm0.017 0.139\pm0.020 0.150\pm0.020 0.150\pm0.022 0.162\pm0.024 0.208\pm0.027 0.234\pm0.028 $	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8 17.0 20.2 23.4 26.5 29.8 33.0 36.2	$\begin{array}{c} 1.279 \ \text{GeV} \\ d\sigma/d\Omega \ dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002 \pm 0.002 \\ -0.005 \pm 0.002 \\ 0.000 \pm 0.003 \\ 0.000 \pm 0.005 \\ 0.004 \pm 0.006 \\ 0.025 \pm 0.007 \\ 0.028 \pm 0.008 \\ 0.048 \pm 0.009 \\ 0.042 \pm 0.008 \\ 0.048 \pm 0.009 \\ 0.042 \pm 0.008 \\ 0.067 \pm 0.010 \\ 0.069 \pm 0.011 \\ 0.071 \pm 0.011 \\ 0.071 \pm 0.011 \\ 0.062 \pm 0.011 \\ 0.091 \pm 0.014 \\ 0.100 \pm 0.015 \\ 0.103 \pm 0.015 \\ 0.144 \pm 0.017 \\ \hline \end{array}$
$E = \frac{E_{np}}{(MeV)}$ -30.3 -27.7 -25.2 -22.6 -20.1 -17.5 -15.0 -12.4 -9.9 -7.3 -4.8 -2.2 0.3 2.9 5.4 8.0 10.5 13.1 15.6 18.2 20.7 23.3 25.8 28.4 30.9	$= 1.020 \text{ GeV} \frac{d\sigma/d\Omega dE_{np}}{(\text{fb/sr MeV})} \frac{(\text{fb/sr MeV})}{0.038\pm0.012} \\ 0.001\pm0.013 \\ 0.006\pm0.013 \\ 0.006\pm0.013 \\ 0.004\pm0.016 \\ 0.009\pm0.016 \\ 0.009\pm0.016 \\ 0.027\pm0.019 \\ 0.023\pm0.021 \\ 0.055\pm0.024 \\ 0.069\pm0.026 \\ 0.083\pm0.032 \\ 0.160\pm0.040 \\ 0.207\pm0.041 \\ 0.275\pm0.047 \\ 0.358\pm0.054 \\ 0.263\pm0.054 \\ 0.263\pm0.054 \\ 0.410\pm0.065 \\ 0.438\pm0.067 \\ 0.492\pm0.066 \\ 0.608\pm0.074 \\ 0.639\pm0.074 \\ 0.639\pm0.074 \\ 0.639\pm0.074 \\ 0.735\pm0.076 \\ 0.756\pm0.076 \\ 0.756\pm0.076 \\ 0.756\pm0.076 \\ 0.756\pm0.076 \\ 0.756\pm0.076 \\ 0.012 \\ 0.$	$E = \frac{E_{np}}{(MeV)}$ -32.6 -29.8 -27.0 -24.3 -21.5 -18.8 -16.0 -13.3 -10.5 -7.7 -5.0 -2.2 0.5 3.3 6.0 8.8 11.6 14.3 17.1 19.8 22.6 25.4 28.1 30.9 33.6	$= 1.102 \text{ GeV} d\sigma/d\Omega dE_{np} (fb/sr MeV) 0.001\pm0.007 0.003\pm0.008 0.007\pm0.010 -0.001\pm0.009 0.009\pm0.009 0.026\pm0.011 -0.002\pm0.008 0.016\pm0.012 0.019\pm0.014 0.034\pm0.017 0.049\pm0.019 0.068\pm0.021 0.098\pm0.024 0.157\pm0.026 0.145\pm0.026 0.145\pm0.026 0.183\pm0.029 0.199\pm0.031 0.262\pm0.038 0.263\pm0.038 0.259\pm0.038 0.334\pm0.041 0.365\pm0.047 0.352\pm0.051 0.422\pm0.050 0.502\pm0.056 \\ \hline$	$E = \frac{E_{np}}{(MeV)}$ -35.3 -32.3 -29.3 -26.3 -20.3 -17.3 -14.3 -11.2 -8.2 -5.2 -2.2 0.8 3.8 6.8 9.8 12.8 15.8 18.8 21.8 24.8 27.8 30.8 33.8 36.8	$= 1.201 \text{ GeV} d\sigma / d\Omega dE_{np} (fb/sr MeV) 0.000\pm0.004 -0.004\pm0.004 -0.002\pm0.006 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 -0.002\pm0.005 0.016\pm0.008 0.016\pm0.008 0.010\pm0.009 0.036\pm0.010 0.053\pm0.012 0.042\pm0.011 0.063\pm0.013 0.081\pm0.014 0.083\pm0.016 0.109\pm0.018 0.100\pm0.017 0.139\pm0.020 0.150\pm0.020 0.150\pm0.022 0.162\pm0.024 0.208\pm0.027 \\ 0.234\pm0.028 \\ 0.209\pm0.027 \\ 0.234\pm0.028 \\ 0.209\pm0.027 \\ 0.29\pm0.027 \\ 0.29\pm0.02$	$E = \frac{E_{np}}{(MeV)}$ -37.4 -34.2 -31.0 -27.8 -24.6 -21.4 -18.2 -15.0 -11.8 -8.6 -5.4 -2.2 1.0 4.2 7.4 10.6 13.8 17.0 20.2 23.4 26.5 29.8 33.0 36.2 39.3	$\begin{array}{c} 1.279 \ \text{GeV} \\ d\sigma/d\Omega \ dE_{np} \\ (\text{fb/sr MeV}) \\ \hline \\ \hline \\ -0.002 \pm 0.002 \\ -0.005 \pm 0.002 \\ 0.000 \pm 0.003 \\ 0.000 \pm 0.005 \\ 0.004 \pm 0.006 \\ 0.025 \pm 0.007 \\ 0.028 \pm 0.008 \\ 0.048 \pm 0.009 \\ 0.042 \pm 0.008 \\ 0.048 \pm 0.009 \\ 0.042 \pm 0.008 \\ 0.067 \pm 0.010 \\ 0.069 \pm 0.011 \\ 0.071 \pm 0.011 \\ 0.071 \pm 0.011 \\ 0.071 \pm 0.011 \\ 0.091 \pm 0.014 \\ 0.100 \pm 0.015 \\ 0.103 \pm 0.015 \\ 0.134 \pm 0.016 \\ \end{array}$

and B_4 . Quadrupoles Q_1-Q_3 provided the focusing strength needed to obtain a large solid angle for the electron spectrometer without unduly disturbing the incident beam. This solid angle $\Delta\Omega$, averaged over $\pm 0.5\%$ in relative momentum δ , was 22.4 msr for the 10-cm target, and 21.5 msr for the 20-cm target. Corrections for the nonuniformity in the electron spectrometer acceptance [15] were generally small since threshold inelastic data were analyzed only in the range $-3.5 \le \delta \le +3.5\%$, where the acceptance was fairly constant.

Electrons transmitted through the target passed through the quadrupole triplet Q_4-Q_6 and were deflected by B_5 into a remotely movable, water-cooled beam dump. The focusing strength of Q_4-Q_6 were chosen to maximize transmission of deuterons into the recoil spectrometer for the elastic data while maintaining an acceptable beam spot size on the dump. The positively charged nuclei recoiling near 0° were deflected by B_5 toward the recoil spectrometer, which was used only in the elastic measurements. The dipole magnets B_6-B_8 of this spectrometer separated recoil deuterons from a large background of lower momentum particles generated in the target.

For track reconstruction, the electron spectrometer contained six multiwire proportional chambers (MWPC) spaced 20 cm apart. Two planes of plastic scintillation counters were used for triggering and fast timing. A large background of pions was rejected by a threshold gas Čerenkov counter and by measuring the energy deposited in a 40-segment array of lead-glass blocks.

The various voltage pulses from the detectors were carried by fast Heliax cables to CAMAC electronic modules in the counting house above end station A. The quantities to be recorded for each scattering event were read from the CAMAC molecules by a PDP-11 microcomputer and transferred to a VAX 11/780 computer for logging onto magnetic tape. The same VAX 11/780 computer was used both for analyzing data on line and for most of the subsequent off-line analysis.

IV. DATA ANALYSIS

The measured differential cross section per nucleon is given by

$$\frac{d^{2}\sigma(E,E')}{d\Omega \, dE'} = \left[\frac{1}{S_{f} D \epsilon(\Delta \Omega(\delta))}\right] \left[\frac{R_{C}(E,E')}{N_{e} \rho L N_{A}}\right] \times \frac{N(E,E')}{\Delta E}, \qquad (11)$$

where N(E, E') is the number of counts in an energy bin of width ΔE centered on E', corrected for the expected number of counts from ed elastic scattering and for inelastic scattering from the hymens, wire array, and target end caps. These corrections, as well as the radiative corrections factors $R_C(E, E')$, are discussed in more detail below. The factor S_f ranged from 0.9 to unity, and is a correction for multiple events within a beam pulse, since only the first event in each pulse was analyzed. The electronic dead-time correction factor D was always within 1% of unity while ϵ , the product of the detector efficiencies, ranged from 94 to 96%. The factor N_A is Avogadro's number, L is the target length, ρ is the target density, and N_e is the number of incident electrons.

A correction of <4% was made for pions misidentified as electrons. Electrons were identified by the large pulse heights they produced in both the Čerenkov counter and the shower counter. Misidentification of pions as electrons could only occur when pions produced a large hadronic shower (for example, by charge exchange to π^0), and at the same time either a random hit or a pionproduced knockon electron ($\approx 1\%$ probability) generated a large pulse height in the Čerenkov counter. No correction for electrons from the processes such as $\gamma d \rightarrow \pi^0 d$, $\pi^0 \rightarrow \gamma \gamma$, $\gamma \rightarrow e^+e^-$ were made since estimates for this correction showed it to be <3%.

As is customary for threshold electron scattering, the cross sections per deuteron were expressed as a differential in E_{np} , using

$$\frac{d^2\sigma}{d\Omega \, dE_{nn}} = \frac{1}{2} \frac{d^2\sigma}{d\Omega \, dE'} \frac{dE'}{dE_{nn}} , \qquad (12)$$

where the factor of 2 is to convert from cross sections per nucleon to cross section per deuteron.

A. Subtraction of events originating outside the target

The measured spectra include a background of electrons scattered from the hymens, wire array, and target end caps. It was necessary to evaluate this background carefully since its contribution grows to 100% at large negative E_{np} , where scattering from the deuteron is kinematically forbidden. Also, the resolution unfolded results discussed below were sensitive to the presence of any residual signal in the electron spectra at large negative E_{np} .

The total background counting rates were measured in separate data runs using empty targets which were replicas of the full ones, except with end caps thicker by a factor of 8.55 for the 20-cm and 8.20 for the 10-cm cells. The thicker end caps on the empty target cells provided both a faster counting rate and approximately the same total radiation length as the full targets. This last condition made for similar radiative correction factors for the full and empty target end caps.

Evaluation of the background contribution was complicated by the fact that the spectrometer solid angle for the aluminum hymens, wire array, and the two end caps of the target were all substantially different. Also, if the scattering at 180° occurred in the downstream end cap or hymen, both the incident and scattered electrons must traverse the target. Thus, electrons interacting downstream of the target undergo energy losses for the full targets which are not present for the empty cells. These complications are discussed below.

The spectrometer solid angle $\Delta\Omega$ depends on the location z of the scattering vertex in addition to the relative momentum δ . A Monte Carlo program [20] was used to generate distributions of events in δ with the scattering vertex held at fixed z positions. An example of such a distribution is shown in Fig. 4(a), where the scattering vertex was held at the location of the upstream end cap.

FIG. 4. (a) A Monte Carlo generated distribution of events for incident electron energy E = 0.889 GeV. The scattering vertex is fixed at the location of the upstream full-target end cap and the error bars are statistical only. Similar distributions were generated with the scattering vertex at other locations, such as the downstream full-target end cap. Each 0.40% bin in relative momentum δ received 160 trials, which were ray-traced through the system using the electron spectrometer matrix elements [16,17]. The solid curve is a sixth-order polynomial fit. (b) Ratio of distribution with the scattering vertex at the downstream end cap over the distribution at the upstream end cap [shown in (a)]. The error bars were calculated using an error matrix for the polynomial fits.

The distributions for other values of z are similar in shape, but vary considerably in overall magnitude, with the downstream hymen having the smallest solid angle. Each distribution was fitted with a sixth-order polynomial curve, and the ratios of the fits were used to evaluate the relative contribution of each background source. The ratio of distributions for the downstream to upstream end caps is shown in Fig. 4(b).

A further complication is the difference between the cross sections per nucleon for the copper wire array and aluminum target end caps and hymens, due to the larger Fermi momentum for copper compared to aluminum. The ratio of these cross sections was obtained from a y-scaling analysis of existing data (see Fig. 4 of Ref. [21]) and yielded a correction factor of 1.1 for the wire array contribution.

The experimentally determined quantities were C_f and C_e , the total counts per unit incident electron for full and empty targets, given by

$$C_i(E,E') = \frac{1}{S_f \epsilon N_e D} N_R(E,E') , \qquad (13)$$

where $N_R(E, E')$ is the raw number of counts corrected for spectrometer acceptance only. For example, C_f is given by

$$C_f = C_h + C_w + rC_E + C_D + rC'_e + C'_h , \qquad (14)$$

where C_D is the desired contribution from liquiddeuterium alone, C_h , C_w , and C_E are the contributions from the hymens, wire array, and target end caps, and r is the ratio of full/empty target end-cap thicknesses. The primes on C'_E and C'_h indicate that these quantities have been corrected for ionization losses in the full targets. To correct for these ionization losses, C'_E and C'_h were evaluated at $(E - \Delta E, E' + \Delta E)$ instead of (E, E'), where ΔE is the most probable energy loss [22], approximately 5.8 MeV for 20 cm of liquid deuterium. Corresponding losses within the endcaps, hymens, and wire array were found to be negligible.

The total measured empty target contribution C_e is given by a similar expression. The ionization losses were neglected in this case as they were not significant. Since these data had poor statistics compared to the full target data, a smooth fit to the empty target data was used.

It was found best to fit the data using the quantity $E^2C_e(E,E')$, which is proportional to the inelastic structure function $W_1(Q^2, \nu)$. Figure 5(a) shows this quantity for all incident energies E as a function of the scaling variable ω' . The data define a relatively smooth curve except for the spectrum at the highest ω' , corresponding to $Q^2 = 1.21$ (GeV/c)². A three-parameter fit to the empty target data was obtained using the form

$$\ln[E^2 C_e(E, E')] = a_1 + a_2 E + a_3 E \omega' .$$
 (15)

This fit yielded a χ^2 value of 1.06 per degree of freedom. The result, shown in Figs. 5(b) and 5(c), was used in the

FIG. 5. (a) Empty target data for $Q^2 = 1.21$, 1.49, 1.61, 1.74, 1.99, 2.23, 2.53, and 2.76 (GeV/c)², shown as counts per unit incident electron charge multiplied by the square of the beam energy E as a function of the ω' scaling variable. (b) Empty target data as in (a) for $Q^2 = 1.21$, 1.49, 1.74, 2.23, and 2.76 (GeV/c)². The curves are a two-dimensional fit using E and ω' with three free parameters. (c) Data and curves as in (a) and (b), but for $Q^2 = 1.61$, 1.99, and 2.53 (GeV/c)².

end-cap subtraction for all of the threshold inelastic data. EThe resulting errors in $C_e(E,E')$ ranged typically from 5% to 30%. Using the ratios of solid angles and thicknesses of each background source and the fits to the empty target data, the desired contribution from deuteri-

um could be extracted. In order to determine the sensitivity to the choice of fit to the empty target data, several fits with up to nine free parameters were obtained. The variation in the final cross sections due to the choice of fit is discussed in Sec. IV C and was only significant for the $Q^2=1.21$ GeV²/c² data.

The counts per unit charge before and after background subtraction are shown in Fig. 6 for the lowest and highest values of Q^2 : 1.21 and 2.76 (GeV/c)². This correction is relatively small for momenta $\delta \leq -2\%$, where the deuterium cross section is large. However, the size of the correction is essentially 100% for $\delta \geq 1\%$, as expected. After subtracting the nondeuterium contributions, all spectra were consistent with zero for large negative E_{np} .

B. Radiative corrections

Radiative corrections were performed to correct for bremsstrahlung and straggling of the incident and scattered electrons in the target medium. Bremsstrahlung occurs both as external radiation in the fields of nuclei distinct from the scattering nucleus and as internal radiation at the scattering vertex. The radiative corrections were carried out using the equivalent radiator procedure of Mo and Tsai [23]. In this approach, the internal bremsstrahlung is modeled by two external radiators, placed before and after the scattering vertex. Since both

FIG. 6. Threshold inelastic data are shown for two values of Q^2 . The data have not been radiatively corrected. The upper set of points without error bars have not been corrected for scattering in material outside the liquid-deuterium target. The lower set of points have been corrected for these interactions. The errors bars include both statistical and systematic contributions.

E and E' depend on the radiated photon energy, the procedure involves integrations over a model for the unradiated cross section $\sigma(E, E')$. The "radiated" cross sections $\sigma_R(E, E')$ are obtained by convoluting $\sigma(E, E')$ with a normalized bremsstrahlung function. In order to perform the required integrations, it was necessary to interpolate the models of $\sigma(E, E')$ in both E and E'. For a given incident energy E, the theoretical models [4] used for $\sigma(E, E')$ were calculated at discrete values of E'. Cross sections at intermediate values of E' were obtained by linear interpolation. For the interpolation in incident energy E, a simple power-law fit was used. The E dependence of a typical cross-section model is shown for $E_{np} = 1$ and 12 MeV in Fig. 7. Since only the threshold region was investigated, the required range in E and E'was only a few percent.

The large range of material in the target before and after scattering caused substantial differences in the radiative correction factors as a function of target length. This was taken into account by calculating the corrections at each of 40 positions equally distributed along the target length. The most probable energy loss corresponding to the thickness of each layer was used to correct Eand Ε'. Radiative correction factors $R_{C}(E,E') = \sigma(E,E') / \sigma_{R}(E,E')$ were calculated separately for each target section with $E_{np} > 0$. The correction factors increased approximately linearly with increasing depth into the target, as expected.

Shown in Figs. 8(a) and 8(b) are the separate contributions to the radiated cross section $\sigma_R(E, E')$ from Landau straggling and bremsstrahlung, for (E, E') = (0.734, 0.3958) GeV, as a function of Δ , a convergence parameter [23] for the improper integrations over E and E'. In the present case, Δ is constrained to a few MeV, and the Landau contribution is small relative to the bremsstrahlung effect.

Unfortunately, as shown in Fig. 8(c), the calculated radiative correction factors displayed a sizable dependence on Δ . This occurred because the straggling energy loss was comparable to the relative energy E_{np} , and the Mo-

FIG. 7. Predicted electrodisintegration cross sections [4] as a function of incident energy E for two values of the relative neutron-proton kinetic energy E_{np} . The predictions use the Dirac electromagnetic form factor $F_1(Q^2)$ for the meson-exchange currents (MEC) with electric neutron form factor $G_{En}(Q^2)$ of Ref. [24].

Tsai approximations break down under these conditions. Because the Landau terms were small, the radiative correction factors $R_C(E,E')$ were calculated using the bremsstrahlung terms only. This removed the lower constraint on Δ , which could then be made arbitrarily small, though still nonzero. The final correction factors $R_C(E,E')$, using bremsstrahlung only and averaged over target segments, had negligible dependence on Δ for any value below $\Delta = 1$ eV.

The radiative correction factors averaged over the target segment are shown in Fig. 9 for $Q^2=1.21$ and 2.76 $(\text{GeV}/c)^2$. The values of $R_C(E, E')$ were calculated separately for each of two widely divergent input models [4]. One model used $F_1(Q^2)$ coupling for the MEC and went smoothly to zero at the breakup threshold, while the other model had $G_E(Q^2)$ coupling and a strong enhancement at threshold. Since these two models represent the largest variation in the E_{np} dependence near threshold (other predictions [4,12] lie in between), the adopted set of radiative correction factors was the average of correction factors obtained from the two input models. Errors were assigned as half the difference between the two sets of

FIG. 8. (a) The radiated cross section $\sigma_R(E,E')$ for (E,E')=(0.735,0.396) GeV as a function of convergence parameter Δ , for scattering from the upstream end of the target. Both total (solid curve) and individual contributions due to bremsstrahlung (dashed curve) and Landau straggling (dotted curve) are shown. (b) Same as (a) except for scattering near the downstream end of the target. (c) The resulting radiative correction factors $R_C(E,E')$ are shown for scattering from the front (solid curve), middle (dashed curve), and back (dotted curve) of the target.

FIG. 9. Radiative correction factors, averaged over target length, are shown as a function of E_{np} for two values of Q^2 . The values of E_{np} correspond to scattering from the center of the target. The results using two different theoretical representations of the true unradiated cross section [4] are shown.

correction factors and ranged typically from ± 3 to ± 8 % of the average correction factor.

C. Resolution unfolding

As previously noted, the data have relatively coarse energy resolution due to the intrinsic spectrometer resolution, ionization energy losses, multiple scattering, and the spread in incident beam energy. This total resolution ranged from ± 5 to ± 9 MeV in E_{np} . The attempt to unfold resolution effects from the data was motivated by the objective of determining the Q^2 dependence of the electrodisintegration cross section near threshold. Since the true cross section near the deuteron breakup threshold may vary rapidly with E_{np} , the resolution unfolding procedure is necessarily model dependent.

Resolution effects have been treated using two different methods. In the first method, theoretical models were convoluted with Monte Carlo determined [20] resolution functions and compared with the data. These results will be described below. In the second method, a modeldependent procedure was used to extract resolution unfolded cross sections, i.e., cross sections free of resolution smearing effects, given by

$$\sigma_{\text{expt}}(E,\delta) = \int_{-\infty}^{\delta_T} R(\delta - \delta') \sigma(E,\delta') d\delta' \left[\int_{-\infty}^{+\infty} R(\delta') d\delta' \right]^{-1},$$
(16)

where $R(\delta')$ is the Monte Carlo calculated resolution function, $\sigma_{expt}(E,\delta)$ represents the experimental data, and δ_T is the electron momentum at threshold relative to the deuteron elastic peak. Resolution functions were obtained by Monte Carlo methods using the known electron

FIG. 10. Threshold inelastic data at $Q^2=2.53$ (GeV/c)² are shown as a function of relative momentum δ . The error bars include all systematic and statistical errors except for the systematic error due to the uncertainty in E'. The three solid curves are fits to the data using polynomial representations of the resolution unfolded cross section, as discussed in the text. Each curve corresponds to a choice of ± 0.25 or 0% momentum shift in the data.

FIG. 11. Threshold inelastic data as in Fig. 10 are shown at three values of Q^2 . The three curves in each panel represent phenomenological cross-section models using a second-order polynomial with three choices of momentum shift, as in Fig. 10. These models were convoluted with the experimental resolution before being fit to the data. A three-parameter fit to the empty target data has been used, as described in the text.

spectrometer matrix elements. The spread in beam energy, and energy losses in the targets and the wire chambers were all taken into account. The true cross section, $\sigma(E,\delta)$, was represented by a polynomial expansion,

$$\sigma(E,\delta) = \begin{cases} \sum_{i=1}^{N} a_i \delta^i , & E_{np} > 0 , \\ 0, & E_{np} < 0 , \end{cases}$$
(17)

where N ranged from 2 to 4. These polynomials were inserted into Eq. (16), and the coefficients adjusted to give the best fit to the experimental data using a leastsquares-fitting routine. Such polynomial representations adequately describe available theoretical predictions for the shape of deuteron cross sections near threshold. Choices other than polynomials are feasible, but were not investigated.

The dominant systematic error arose from an uncertainty [16] of $\pm 0.25\%$ in the scattered electron energy E'. This yielded errors of ± 10 to $\pm 30\%$ in the cross sections and contributed the largest variations in the resolution unfolded results. The size of these variations in the unfolded cross sections was evaluated by shifting the data by $\pm 0.25\%$ in δ and repeating the least-squares fit in each case. The reduced χ^{2} 's for these fits ranged from 1.0 to 1.9 with an average of 1.3.

Typical fits to the radiatively corrected data for $Q^2=2.53$ (GeV/c)² are shown in Fig. 10. The three solid curves correspond to momentum shifts of ± 0.25 and 0%.

Figures 11–13 show, for three values of Q^2 , the cross

FIG. 12. Same as Fig. 11, except for a third-order polynomial representation.

FIG. 13. Same as Figs. 11 and 12, except for a fourth-order polynomial representation.

sections $\sigma(E,\delta)$ from second-, third-, and fourth-order polynomial fits to the radiatively corrected data. In each figure panel, the three curves correspond to the threemomentum shifts δ of ± 0.25 and 0% for a given choice of polynomial order. Although these cross-section fits are consistent with a nonzero cross section at the breakup threshold, the large dependence on the shifts in δ makes it impossible to draw any firm conclusions regarding the shape of the true cross section at threshold.

The resolution unfolded cross sections for all Q^2 were averaged over the relative kinetic energy E_{np} from 0 to a maximum E_{np}^M for comparison with averaged theoretical predictions as well as previous data. The E_{np} -averaged results for each value of Q^2 are shown as a function of E_{np}^M in Figs. 14–16. The curves in each figure panel correspond to the various choices of momentum offset and polynomial order. For a given E_{np}^M , the final unfolded result at each Q^2 was chosen as the centroid of the curves. Results from earlier experiments have usually been averaged over E_{np} from 0 to 3 MeV. As seen in Figs. 14–16, the large systematic spreads in the resolution unfolded results are dramatically reduced by averaging over a larger range of E_{np} , 0–10 MeV. The 0–10 MeV range was chosen since it is comparable to the experimental resolution. The present results were compared to similarly averaged predictions in Sec. V.

The spectrum at $Q^2 = 1.21$ (GeV/c)² was analyzed using both a three- and nine-parameter fit to the corresponding empty target data, and the results are shown in Figs. 14(a) and 14(b). The final cross sections in this case

FIG. 14. Resolution unfolded cross sections averaged over E_{np} from 0 to E_{np}^{M} are shown as a function of E_{np}^{M} . The dotted, dashed, and solid curves refer to a momentum shift of ± 0.25 , -0.25, and 0%, respectively. Each individual curve corresponds to a particular choice of polynomial order, second to fourth. In (a) and (c), a three-parameter fit to the empty target data is used while in (b), results with a nine-parameter fit are shown.

were obtained as the average of the two sets of results.

The systematic errors in the unfolding procedure were estimated from the observed variation among the curves for each Q^2 in Figs. 14–16. For example, the E_{np} averaged cross sections tend to fall into three groups corresponding to the momentum shifts applied to the data. This variation in the results was the largest systematic uncertainty, ranging from $\pm 20\%$ of the centroid for a 0-10 MeV range of E_{np} to $\pm 70\%$ for a 0-5 MeV range. Systematic errors due to the choice of polynomial order for the unfolded results were similarly estimated, and they varied from $\pm 5\%$ for a 0–10 MeV range to $\pm 30\%$ for a 0-5 MeV range. An additional error of $<\pm 10\%$ was due to the estimated uncertainty in the width of the Monte Carlo resolution function. All of the systematic errors discussed above were added in quadrature to form the total error. Statistical errors in the resolution unfolded cross sections were negligible in comparison.

V. COMPARISON WITH THEORY

A. Predictions folded with the experimental energy resolution

One of the present experimental goals is to test for the influence of non-nucleonic effects such as MEC's and,

FIG. 15. Same as Fig. 14 except for $Q^2 = 1.61$, 1.74, and 1.99 $(\text{GeV}/c)^2$, and all results were obtained with a three-parameter fit to the empty target data.

FIG. 16. Same as Fig. 15 except at $Q^2 = 2.23$, 2.53, and 2.76 $(\text{GeV}/c)^2$.

possibly, quark clusters in the deuteron wave function. If, for example, the MEC's have a strong effect on the predictions up to $E_{np} = 20$ MeV, then the present resolution unfolded results constitute a legitimate test of E_{np} -averaged models.

Theoretical indications for the importance of MEC's at large E_{np} are presented in Fig. 17, where several mesonnucleon predictions [4] and a hybrid quark-hadron prediction [12] are shown for the lowest and highest Q^2 values of the present experiment. The calculations including the MEC are all considerably lower than the IA calculation, with the differences decreasing slowly with increasing E_{np} . At $E_{np} = 20$ MeV, the calculation [4] using F_1 coupling for the MEC is about 50% of the IA calculation at $Q^2 = 1.21$ (GeV/c)², and only 15% of the IA calculation at $Q^2 = 2.76$ (GeV/c)². Since any deviation from the IA is a measure of the influence of nonnucleonic effects, it is clear that, for the models studied, MEC's contribute strongly over a relatively large range of E_{np} .

Figure 17 emphasizes the large differences that exist between calculations with different treatments of the MEC. For $E_{np} \leq 10$ MeV these variations can exceed an order of magnitude, and they remain large for E_{np} up to

FIG. 17. Various predictions as a function of E_{np} assuming perfect experimental resolution in E_{np} . The solid curves represent the hybrid quark-hadron model of Yamauchi *et al.* [12]. The other curves represent the meson-nucleon predictions of Arenhövel *et al.* [4]. The dashed curves represent calculations with Dirac (F_1) coupling for the MEC. The dotted and dot-dashed curves represent calculations with Sachs (G_E) coupling and $G_{En}(Q^2)=0$ and $G_{En}(Q^2)$ of Ref. [24], respectively. The dash-double-dotted curves represent the IA calculation.

The coarse energy resolution of the present data motivated the use of two methods of comparison with

theoretical predictions. The model-dependent resolution unfolding procedure has already been discussed, and the resulting comparisons with theory will be presented below. A less model-dependent procedure is to compare the actual data with predictions folded with Monte Carlo determined resolution functions.

The convolution integral with respect to E_{np} can be written as

$$\sigma_{s}(E, E_{np}) = \int_{0}^{\infty} R(E_{np} - E_{np}') \sigma(E, E_{np}') dE_{np}' / \int_{-\infty}^{\infty} R(E_{np}') dE_{np}' , \qquad (18)$$

where $\sigma(E, E_{np})$ is the theoretical cross section, $R(E_{np})$ is the resolution function, and $\sigma_s(E, E_{np})$ is the resolutionsmeared cross section.

Radiatively corrected data at six values of elastic fourmomentum transfer squared Q^2 are shown in Figs. 18 and 19. The error bars represent total statistical and systematic uncertainties, added in quadrature. The $\pm 0.25\%$ uncertainty in scattered electron energy E' produced the largest systematic error in the cross sections.

Also shown in Figs. 18 and 19 are several nonrelativistic predictions [4,12] smeared by the experimental resolution function according to Eq. (18). Within ≈ 3 MeV of threshold, electroproduction proceeds primarily through

an M1 spin-flip transition to an unbound ${}^{1}S_{0}$ T=1 scattering state. However, for E_{np} greater than a few MeV, higher-order partial waves contribute to the electrodisintegration cross section. The meson-nucleon predictions of Arenhövel et al. [4] take account of all electric and magnetic transitions with $L \leq 4$, where L is the orbital angular momentum of the final state. The hybrid quark-hadron calculations of Yamauchi et al. [12] take account of 12 different final np states and 28 transitions. Thus, the comparison of these predictions with the present data for E_{np} up to 20 MeV is justifiable.

The meson-nucleon predictions shown in Figs. 18 and 19 all use the Paris potential [7] to describe the deuteron

2.23 [(GeV/c)²

2.53 [(GeV/c)²

2.76 [(GeV/c)²]

'b'

(c)

40

20

0.8

0.4

0

0.2

0.1

0

0.10

0.05

0

-20

(fb/sr MeV) 0.3

d²σ/dΩd*E_{np}*

0 -20 0 20 40 Enp (MeV) FIG. 18. Radiatively corrected data are shown at three values of Q^2 . The error bars include contributions from both statistical and systematic errors. The curves have the same meaning as in Fig. 17, but have been convoluted with the experimental resolution, and the IA calculation is not shown.

Enp FIG. 19. Same as in Fig. 18 except at higher Q^2 .

0

(MeV)

wave function. Calculations with both the $G_E(Q^2)$ and $F_1(Q^2)$ electromagnetic form factors for the MEC are represented. The calculations employing $G_E(Q^2)$ use two different choices for the neutron form factor $G_{En}(Q^2)$: $G_{En}(Q^2)=0$ and the model of Gari and Krümpelmann [24]. These choices have a sizable effect on the calculations, although it should be noted that the first choice is strongly favored by recent data [9]. The models with Dirac coupling describe the data better up to $Q^2 \approx 2$ (GeV/c)², while those with Sachs coupling exhibit comparable agreement at higher Q^2 values.

The effects of six-quark clusters in the deuteron wave function are generally expected to be small. Exploratory quark-inspired models [10-12] are plagued by high sensitivity to poorly constrained parameters. The hybrid quark-hadron model of Ref. [12] is in fair agreement with the higher Q^2 data shown in Fig. 19, but lies below the lower Q^2 data shown in Fig. 18.

To summarize this section, none of the nonrelativistic predictions [4,12] is in quantitative agreement with the data over the entire Q^2 range 1.2–2.7 (GeV/c)², although some calculations can describe the data in a more limited Q^2 range. In particular, understanding of the present data relies heavily on resolving the issue of what electromagnetic form factor is appropriate for the MEC. Fully relativistic meson-nucleon calculations and more rigorous quark-hadron models are needed.

B. Predictions compared with resolution unfolded data

In Sec. IV, a model-dependent procedure for extracting resolution unfolded cross sections was described. The results for each Q^2 were averaged over various ranges of E_{np} . A range of 0–10 MeV in E_{np} was chosen to be compatible with the present energy resolution, and much larger than the $\pm 0.25\%$ uncertainty in E'. Also, the model dependence was found to be substantially reduced for larger averaging ranges.

Averaging over a range 0-10 MeV requires some justification since previous experiments [1] at lower Q^2 have a better resolution than the present high- Q^2 experiment, and the published results were averaged over $E_{np} = 0-3$ MeV. For comparison, Fig. 20 shows three different theoretical predictions [4,12] averaged both over the range of E_{np} from 0 to 3 and over the range from 0 to 10 MeV. For the model of Yamauchi et al. [12] and the G_E calculation of Arenhövel et al. [4], the 0-3 MeV averaging range gives somewhat larger results than the 0-10 MeV range. This is expected since these models predict an enhancement in the cross section close to threshold. However, the differences are small, on the same order as the experimental errors, and the differences between the models is much larger than differences due to the averaging range. The F_1 calculation of Arenhövel et al. [4] shows a larger difference between the two averaging ranges, especially at low Q^2 . In this case the 0-10 MeV results are higher than the 0-3 MeV results because this model predicts no enhancement at threshold. Nevertheless, the differences due to the choice of MEC coupling $(F_1$ versus G_E) are much larger than the differences due to the averaging range.

FIG. 20. Two theoretical predictions of Arenhövel *et al.* [4] with F_1 and G_E coupling for the MEC, and the calculation of Yamauchi *et al.* [12] are shown as a function of Q^2 averaged over E_{np} from 0 to 3 and 0 to 10 MeV (indicated as 3 and 10 in the figure, respectively).

In short, at least up to $E_{np} = 20$ MeV, differences between various predictions are much larger than effects from different E_{np} -averaging ranges and errors introduced by the resolution unfolding procedures. We therefore feel it is reasonable to compare the present experimental results, averaged over 0-10 MeV, with similarly averaged theoretical predictions.

Resolution unfolded results from the present experiment averaged over 0-10 MeV are compared with similarly averaged predictions [4,12] shown on the right-hand side of Fig. 21. The error bars include both statistical and systematic uncertainties, and primarily reflect the uncertainty in E'. Higher-resolution data from a recent experiment [25] performed at the Bates Linear Accelerator Center up to $Q^2 = 1.6$ (GeV/c)² are in reasonable agreement with the present data. On the left-hand side of Fig. 21, finer resolution data from previous experiments [1,25] are compared with the theoretical predictions of Ref. [12] at $E_{np} = 1.5$ MeV, and of Ref. [4], averaged over the range 0-3 MeV. The differences due to averaging over 0-3 versus 0-10 MeV are indicated by the small discontinuities in the curves at $Q^2 = 1.1$ (GeV/c)². Despite the relatively coarse resolution in E_{np} and systematic errors from resolution unfolding, the present data can discriminate between the available models. The data indicate a change in slope with increasing Q^2 around 1 $(GeV/c)^2$, which is qualitatively consistent with "diffraction features" observed in all of the models.

Although several models predict the change of slope shown in Fig. 21 at roughly the correct Q^2 value, they are not in accord with the data over the entire Q^2 range. While the inclusion of MEC certainly improves the

FIG. 21. Threshold inelastic cross sections at 180° are shown as a function of Q^2 . The meson-nucleon predictions of Arenhövel *et al.* [4] using the Paris potential are shown in the IA and with the MEC using both Dirac and Sachs coupling as indicated. The hybrid quark-hadron model of Yamauchi *et al.* [12] is represented as the solid curve. All predictions and present data above $Q^2=1.1$ (GeV/c)² are averaged over E_{np} from 0 to 10 MeV. Below $Q^2=1.1$ (GeV/c)², previous data (open circles, Auffret *et al.* in Ref. [1]) and all predictions are averaged over $E_{np}=0-3$ MeV. The open squares represent recent data from Ref. [25], also averaged over $E_{np}=0-3$ MeV.

agreement for $Q^2 < 1$ (GeV/c)², severe discrepancies remain at higher Q^2 . Comparisons of the present data with other predictions are given elsewhere [25-27]. The dependence on nucleon-nucleon potential, nucleon form factor parametrization, treatment of MEC and isobars, and possible quark clusters are examined in these references. All of these inputs are found to have a substantial influence on nonrelativistic predictions. The extensive investigations in [27] show that certain choices of nucleonnucleon potential and neutron form factor parametrization lead to agreement with most of the available data in their nonrelativistic model, although the calculations always lie below the data in the region $1.2 < Q^2 < 2$ (GeV/c)² (see Fig. 8 of [27]).

C. Ratio of inelastic structure functions

As shown in Eq. (10), the cross section for inelastic electron scattering can be written in terms of two inelastic structure functions, $W_1(E_{np}, Q^2)$ and $W_2(E_{np}, Q^2)$ (see Table II). The present backward angle measurements of threshold inelastic and quasielastic [14] scattering yield $W_1(E_{np}, Q^2)$, while the results of a previous measurement [28] at forward angles, are to a good approximation proportional to $W_2(E_{np}, Q^2)$. In the IA the ratio W_1/W_2 is approximately equal to unity, independent of E_{np} and Q^2 . This can from be seen the definition $W_1/W_2 = (1+v^2/Q^2)/(1+R)$, where R is the ratio of longitudinal to transverse cross sections. In our kinematic region, v^2 is small compared to Q^2 , and in the IA R is small and decreases with increasing Q^2 . While the ratio W_1/W_2 is fairly insensitive to the choice of wave function and nucleon form factors, the influence of the MEC can substantially reduce the transverse cross section at low E_{nv} , while leaving the longitudinal cross section unchanged, thus resulting in large values of R and small W_1/W_2 ratios. It is also possible for mechanisms beyond the IA to enhance the longitudinal cross section near threshold.

The previous data [28] used to obtain $W_2(E_{np}, Q^2)$ were taken at a scattering angle of 8°. The cross sections

TABLE II. Ratio of the inelastic structure functions W_1/W_2 for inelastic electron-deuteron scattering. The relative energy E_{np} in units of MeV is evaluated at the target center, and the errors include both statistical and systematic contributions.

$\langle Q^2 \rangle = 1.36 \; (\text{GeV}/c)^2$		$\langle Q^2 \rangle = 1.84 \; (\text{GeV}/c)^2$		$\langle Q^2 \rangle = 2.33 \; (\text{GeV}/c)^2$	
E_{np}	W_1/W_2	E_{np}	W_1/W_2	E_{np}	W_1/W_2
9.4	0.178±0.024	11.8	0.237±0.035	14.3	0.386±0.071
13.6	0.211±0.027	16.9	$0.317{\pm}0.047$	20.3	$0.534{\pm}0.094$
17.8	$0.320 {\pm} 0.060$	22.0	$0.435 {\pm} 0.068$	26.3	$0.525 {\pm} 0.103$
22.0	0.310 ± 0.061	27.1	0.441 ± 0.071	32.3	0.774±0.147
26.2	$0.368 {\pm} 0.075$	32.2	$0.489{\pm}0.077$	38.3	$0.730{\pm}0.132$
32.4	0.409 ± 0.065	38.5	$0.428 {\pm} 0.082$	49.9	$0.525 {\pm} 0.129$
40.3	0.521 ± 0.071	48.1	0.795±0.113	61.4	$0.734{\pm}0.145$
48.2	$0.746 {\pm} 0.089$	57.6	0.541 ± 0.080	72.8	0.847±0.147
56.1	0.812 ± 0.092	67.2	0.923 ± 0.115	85.6	0.711±0.118
64.0	0.645±0.073	76.8	0.743±0.093	96.4	0.702 ± 0.106
71.9	$0.796 {\pm} 0.085$	86.4	$0.820{\pm}0.097$	107.1	0.857±0.117
80.8	0.876 ± 0.114	96.0	0.827 ± 0.108	117.9	$1.010 {\pm} 0.130$
88.3	0.931±0.109	105.0	0.927±0.108	128.7	$0.764{\pm}0.098$
95.7	0.811±0.095	114.0	0.931±0.105	139.5	1.000 ± 0.120
103.1	0.892 ± 0.101	123.0	$0.843 {\pm} 0.094$	151.5	$0.877 {\pm} 0.150$
110.5	0.825 ± 0.094	132.0	$0.856 {\pm} 0.093$	161.6	$0.974 {\pm} 0.140$
118.0	0.924 ± 0.102	141.0	0.849 ± 0.090	171.7	$1.050 {\pm} 0.150$
126.3	$0.979 {\pm} 0.122$	151.3	1.010 ± 0.130	181.9	$0.947 {\pm} 0.130$
		159.8	$1.110 {\pm} 0.130$	192.0	1.040 ± 0.130

are shown in Fig. 22 for eight values of Q^2 in the range 0.2-1.0 (GeV/c)². These data have been resolution unfolded using the model-dependent procedure described above, and the error bars are total statistical and systematic uncertainties. As in the present experiment, the largest systematic errors in the resolution unfolding procedure were caused by an uncertainty of $\pm 0.5\%$ in E'. A smaller systematic error [28] of 7.5%, not associated with the resolution unfolding, has been added in quadrature. To obtain the ratios W_1/W_2 , it was necessary to extract $W_2(E_{np}, Q^2)$ at the same E_{np} and Q^2 values of the $W_1(E_{np}, Q^2)$ results. The data of Fig. 22 were interpolated to the desired kinematic values using a two-dimensional fit in the incident energy E and the Bjorken scaling variable x_D . The fit function had the form

$$f(E, x_D) = e^{h(E, x_D)},$$
(19)

where

$$h(E, x_D) = a_1 + a_2 x_D + a_3 E + a_4 E x_D^2 + a_5 E^2 + a_6 E^2 x_D ,$$
(20)

and is represented by the curves in Fig. 22. Each curve corresponds to a different value of the beam energy E, ranging from 7 to 14 GeV.

The ratios W_1/W_2 , extracted at three average values of Q^2 , are shown in Fig. 23. In each case, W_1/W_2 is approximately unity for $E_{np} > 50$ MeV, but decreases as $E_{np} \rightarrow 0$, in agreement with earlier results by Titov [29] at lower Q^2 . This indicates values of R which become relatively large near threshold. The curves in Fig. 23 represent calculations [4,30] that use wave functions derived from the Paris potential and take into account final-state interactions, MEC, and Δ resonances. All of the predictions of Ref. [4] yield $W_1/W_2 \approx 1$ for $E_{np} > 40$ MeV, in agreement with the data. Below $E_{np} = 50$ MeV,

FIG. 22. Resolution unfolded electrodisintegration data from Ref. [28] are shown for E = 6.519, 7.302, 8.981, 9.718, 10.407, 11.671, 12.821, and 14.878 in order from top to bottom. The data were taken at 8°, and the error bars are total statistical and systematic errors. The curves represent a six-parameter global fit.

FIG. 23. Values of the ratio W_1/W_2 as a function of E_{np} , extracted for three values of average Q^2 from the present 180° data and forward angle data of Ref. [28]. The inner error bars are statistical errors only, and outer error bars include systematic uncertainties. The meson-nucleon predictions of Arenhövel *et al.* [4] using the Paris potential are shown in the IA and with the MEC using both Dirac (F_1) and Sachs (G_E) couplings. The meson-nucleon predictions of Laget [30] also use the Paris potential.

the IA calculation and a calculation that includes the MEC with Sachs coupling produce essentially constant values of W_1/W_2 over the entire range of E_{nv} , in marked disagreement with the data. Even though both W_1 and W_2 are strongly affected by the MEC near threshold (see Figs. 18 and 19), with the Sachs coupling R remains small, so that W_1/W_2 remains close to unity. The prediction that uses Dirac coupling for the MEC decreases rapidly as $E_{np} \rightarrow 0$, in qualitative agreement with the data. This is due to the absence of any enhancement of W_1 near the deuteron breakup threshold (see Fig. 17), resulting in large values of R. The prediction of Ref. [30] does not extend into the threshold region and lies somewhat below the results of Ref. [4] at large E_{np} . It will be interesting to see if future calculations will be able to describe the shape and magnitude of both W_1 and W_2 for $E_{np} < 40 {\rm MeV}.$

VI. CONCLUSIONS

Inelastic cross sections for electron scattering from deuterium near threshold have been extended by this experiment to $Q^2=2.7$ (GeV/c)². The present resolution unfolded results, when compared with earlier data [1] at lower Q^2 , have provided the first evidence of a change of slope in the cross section near $Q^2 \approx 1$ (GeV/c)². This change of slope is consistent with recent experimental results [25] with improved energy resolution. Although the present data have relatively poor resolution in E_{np} , calculations convoluted with the experimental energy resolution maintain a strong sensitivity to the effects of the MEC. Comparisons to several nonrelativistic calculations [4,12,27] show that the inclusion of the MEC substantially improves the agreement with data, although none of the theoretical curves passes through the error bars of all the available data.

It is clear that the present experimental results have opened many new questions in a region where the deute-

- R. E. Rand et al., Phys. Rev. Lett. 18, 469 (1967); G. G.
 Simon, F. Borkowski, C. Schmitt, V. H. Walther, H.
 Arenhövel, and W. Fabian, Nucl. Phys. A324, 277 (1979);
 M. Bernheim et al., Phys. Rev. Lett. 46, 402 (1981); S.
 Auffret et al., ibid. 55, 1362 (1985).
- [2] R. G. Arnold et al., Phys. Rev. C 42, R1 (1990).
- [3] J. Hockert *et al.*, Nucl. Phys. A217, 14 (1973); J. A. Lock and L. L. Foldy, Ann. Phys. 93, 276 (1975); W. Fabian and H. Arenhövel, Nucl. Phys. A258, 461 (1976).
- [4] H. Arenhövel, Prog. Theor. Phys. Suppl. 91, 1 (1987); S. K. Singh, W. Leidemann, and H. Arenhövel, Z. Phys. A 331, 509 (1988); A. Buchmann, W. Leidemann, and H. Arenhövel, Nucl. Phys. A443, 726 (1985); H. Arenhövel, *ibid.* A374, 532c (1982); H. Arenhövel, private communication.
- [5] J. Adam, Jr. and E. Truhlik, Czech. J. Phys. B 34, 1157 (1984); Few Body System Suppl. 1, 261 (1986); J. Delorme, Nucl. Phys. A446, 65c (1985); E. Hadjimichael, Phys. Lett. B 172, 156 (1986); J. M. Lina and B. Goulard, Phys. Rev. C 34, 714 (1986).
- [6] F. Gross and D. O. Riska, Phys. Rev. C 36, 1928 (1987).
- [7] M. Lacombe, B. Loiseau, J.-M. Richard, R. Vinh Mau, J. Cote, P. Pires, and R. De Tourneil, Phys. Rev. C 21, 861 (1980).
- [8] R. Machleidt, K. Holinde, and C. Elster, Phys. Rep. 149, 1 (1987).
- [9] A. Lung et al., submitted to Phys. Rev. Lett.
- [10] L. S. Kisslinger, Phys. Lett. **112B**, 307 (1982); Tan-Sheng Cheng and L. S. Kisslinger, Nucl. Phys. A457, 602 (1986).
- [11] L. Ya. Glozman, N. A. Burkova, E. I. Kochina, and V. I. Kukulin, Phys. Lett. B 200, 406 (1988).
- [12] Y. Yamauchi and M. Wakamatsu, Nucl. Phys. A457, 621
 (1986); Y. Yamauchi et al., ibid. A443, 628 (1985); Y.
 Yamauchi, A. Buchmann, and A. Faessler, *ibid.* A526, 495
 (1991); Y. Yamauchi, private communication.
- [13] E. D. Bloom and F. J. Gilman, Phys. Rev. D 4, 2901

ron wave function, non-nucleonic degrees of freedom, and relativistic effects are all important.

ACKNOWLEDGMENTS

We would like to acknowledge the support of J. Davis, R. Eisele, C. Hudspeth, J. Mark, J. Nicol, R. Miller, L. Otts, and the rest of the SLAC staff. We also thank H. Arenhövel, J.-M. Laget, and Y. Yamauchi for providing numerical results of their calculations. This work was supported in part by the Department of Energy, Contracts DOE-AC03-76SF00515 (SLAC), W-7405-ENG-48 (LLNL), DE-AC02-76ER-02853 (U. Mass.); National Science Foundation Grant PHY85-10549 (A.U.); the U.S.-Israel Binational Science Foundation (Tel-Aviv); and the Monbusho International Research Program (A. Hotta).

(1971).

- [14] R. G. Arnold et al., Phys. Rev. Lett. 61, 806 (1988).
- [15] P. E. Bosted et al., Phys. Rev. C 42, 38 (1990).
- [16] A. T. Katramatou, G. Petratos, R. G. Arnold, P. E. Bosted, E. L. Eisele, and R. Gearhart, Nucl. Instrum. Methods A 267, 448 (1988).
- [17] G. G. Petratos, Ph.D. thesis, The American University, 1988.
- [18] R. G. Arnold et al., Phys. Rev. Lett. 58, 1723 (1987); A. T. Katramatou, Ph.D. thesis, The American University, 1988.
- [19] R. F. Koontz, Roger Miller, G. Leger, and R. Nelson (unpublished).
- [20] A. T. Katramatou, SLAC Report No. SLAC-NPAS-TN-86-8, 1986.
- [21] D. B. Day et al., Phys. Rev. Lett. 59, 427 (1987).
- [22] L. D. Landau, J. Phys. (Moscow) 8, 201 (1944); R. M. Sternheimer and R. F. Peirls, Phys. Rev. B 3, 3681 (1971).
- [23] Y. S. Tsai, SLAC Report No. SLAC-PUB-848, 1971; L.
 M. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).
- [24] M. Gari and W. Krümpelmann, Z. Phys. A 322, 689 (1985); Phys. Lett. B 173, 10 (1986).
- [25] K. S. Lee et al., Phys. Rev. Lett. 67, 2634 (1991).
- [26] W. Leidemann, K.-M. Schmitt, and H. Arenhövel, Phys. Rev. C 42, R826 (1990).
- [27] E. Truhlik and K.-M. Schmitt, Few-Body Systems 11, 155 (1992).
- [28] W. P. Schütz *et al.*, Phys. Rev. Lett. **38**, 259 (1977); R. G. Arnold, private communication.
- [29] Yu. I. Titov, Kharkov Report No. KhFTI-87-38, 1987 (unpublished); A. S. Esaulov, A. P. Rekalo, M. P. Rekalo, Yu. I. Titov, A. V. Akhmerov, and E. M. Smelov, Yad. Fiz. 45, 410 (1987).
- [30] J.-M. Laget, Phys. Lett. B 199, 493 (1987); Can. J. Phys. 62, 1046 (1984); private communication.