Skip to main content

About Gerald B. Downes

Groups of neurons within the spinal cord coordinate the precise movements of locomotive behavior, such as walking or swimming. Our laboratory is interested in the development, organization, and function of these neuronal networks and we use the zebrafish embryo as our model system. The zebrafish embryo has several characteristics that make it particularly well-suited to study spinal cord networks. The embryos demonstrate robust swimming behavior, their spinal cords are relatively simple compared to mammalian spinal cords, the embryos are transparent so spinal cord development can be easily observed, and a large array of genetic resources are available. These features allow us to take an integrated genetic, molecular, cellular, and behavioral approach to study the spinal cord networks that orchestrate locomotive behavior. Since spinal cord organization is broadly conserved among vertebrates, our work holds promise to provide insight into mammalian spinal cords.
One approach we are taking to examine spinal cord networks utilizes zebrafish mutants that demonstrate abnormal locomotive behavior, indicating that they contain spinal cord network defects. Instead of performing the normal left and right tail flips that comprise swimming behavior, one group of mutants exhibit nose to tail compressions, similar to the accordion musical instrument, and another group of mutants demonstrate uncoordinated, spastic behavior. We are currently determining the cellular and molecular defects in these mutants with the goal of identifying the potentially novel genes and neurons required for locomotive behavior. Complementing this approach, we are also examining the organization and function of glycinergic neurotransmission within the zebrafish spinal cord. Glycinergic neurotransmission is essential for normal locomotive behavior, and we are interested in elucidating the multiple roles it plays during the development of spinal cord networks.

Positions

Present Associate Professor, Biology Department, University of Massachusetts Amherst
to

Disciplines



$
to
Enter a valid date range.

to
Enter a valid date range.

Honors and Awards

  • 2015 National Science Foundation Collaborative Research Grant


Contact Information

427C Morrill II South
University of Massachusetts Amherst
Amherst MA, 01003
Tel:413-545-1266