Skip to main content
Article
Approximate Reduction of Dynamical Systems
Departmental Papers (ESE)
  • Paulo Tabuada, University of Pennsylvania
  • Aaron D Ames, University of Pennsylvania
  • Agung Julius, University of Pennsylvania
  • George J Pappas, University of Pennsylvania
Document Type
Journal Article
Date of this Version
7-1-2008
Comments
Postprint version. Published in Systems and Control Letters, Volume 57, Issue 7, July 2008, pages 538-545.
Publisher URL: http://dx.doi.org/10.1016/j.sysconle.2007.12.005
Abstract

The reduction of dynamical systems has a rich history, with many important applications related to stability, control and verification. Reduction of nonlinear systems is typically performed in an "exact" manner - as is the case with mechanical systems with symmetry - which, unfortunately, limits the type of systems to which it can be applied. The goal of this paper is to consider a more general form of reduction, termed approximate reduction, in order to extend the class of systems that can be reduced. Using notions related to incremental stability, we give conditions on when a dynamical system can be projected to a lower dimensional space while providing hard bounds on the induced errors, i.e., when it is behaviorally similar to a dynamical system on a lower dimensional space. These concepts are illustrated on a series of examples.

Citation Information
Paulo Tabuada, Aaron D Ames, Agung Julius and George J Pappas. "Approximate Reduction of Dynamical Systems" (2008)
Available at: http://works.bepress.com/george_pappas/239/