Skip to main content
Adaptive Algorithms for Coverage Control and Space Partitioning in Mobile Robotic Networks
Technical Reports (ESE)
  • Jerome Le Ny, University of Pennsylvania
  • George J Pappas, University of Pennsylvania
We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic gradient view simplifies and generalizes previously proposed solutions, and is applicable to new complex scenarios, for example adaptive coverage involving heterogeneous agents. Finally, our algorithms often take the form of simple distributed rules that could be implemented on resource-limited platforms.
Document Type
Technical Report
Date of this Version
  • robotics,
  • coverage control problems,
  • partitioning algorithms,
  • stochastic gradient algorithms,
  • dynamic vehicle routing problems,
  • adaptive algorithms
Citation Information
Jerome Le Ny and George J Pappas. "Adaptive Algorithms for Coverage Control and Space Partitioning in Mobile Robotic Networks" (2010)
Available at: