Skip to main content
Dynamic instability and motile events of native microtubules from squid axoplasm
Cell Motility and the Cytoskeleton (1988)
  • Deiter G Weiss
  • George M Langford, Syracuse University
  • Deiter Seitz-Tutter
  • franz Keller

Native microtubules from extruded axoplasm of squid giant axons were used as a paradigm to characterize the motion of organelles along free microtubules and to study the dynamics of microtubule length changes. The motion of large round organelles was visualized by AVEC-DIC microscopy and analyzed at a temporal resolution of 10 frames per second. The movements were smooth and showed no major changes in velocity or direction. During translocation, the organelles paused very rarely. Superimposed on the rather constant mean velocity was a velocity fluctuation, which indicated that the organelles are subject to considerable thermal motion during translocation. Evidence for a regular low-frequency oscillation was not found. The thermal motion was anisotropic such that axial motion was less restricted than lateral motion. We conclude that the crossbridge connecting the moving organelle to the microtubule has a flexible region that behaves like a hinge, which permits preferential movement in the direction parallel to the microtubule. The dynamic changes in length of native microtubules were studied at a temporal resolution of 1 Hz. About 98% of the native microtubules maintained their length (“stable” microtubules), while 2% showed phases of growing and/or shrinking typical for dynamic instability (“dynamic” microtubules). Gliding and organelle motion were not influenced by dynamic length changes. Transitions between growing and shrinking phases were low-frequency events (1–10 minutes per cycle). However, a new type of microtubule length fluctuation, which occurred at a high frequency (a few seconds per cycle), was detected. The length changes were in the 1–3 μm range. The latter events were very prominent at the (+) ends. It appears that the native axonal microtubules are much more stable than the purified microtubules and the microtubules of cultured cells that have been studied thus far. Potential mechanisms accounting for the three states of microtubule stability are discussed. These studies show that the native microtubules from squid giant axons are a very useful paradigm for studying microtubule-related motility events and microtubule dynamics.

  • Axonal Transport,
  • Force generation,
  • MAPs,
  • Microtubule assembly/disassembly,
  • Motion analysis,
  • Organelle movement
Publication Date
January 1, 1988
Publisher Statement
Weiss, Dieter G., George M. Langford, Dieter Seitz-Tutter, and Franz Keller. “Dynamic Instability and Motile Events of Native Microtubules from Squid Axoplasm.” Cell Motility and the Cytoskeleton 10, no. 1–2 (January 1, 1988): 285–95. doi:10.1002/cm.970100133.
Citation Information
Deiter G Weiss, George M Langford, Deiter Seitz-Tutter and franz Keller. "Dynamic instability and motile events of native microtubules from squid axoplasm" Cell Motility and the Cytoskeleton Vol. 10 Iss. 1-2 (1988)
Available at: