Skip to main content
Article
Electrochemical control of cell death by reduction-induced intrinsic apoptosis and oxidation-induced necrosis on CoCrMo alloy in vitro
Biomaterials (2012)
  • Morteza Haeri
  • Torsten Wӧllert
  • George M Langford, Syracuse University
  • Jeremy L Gilbert
Abstract

Electrochemical voltage shifts in metallic biomedical implants occur in-vivo due to a number of processes including mechanically assisted corrosion. These excursions may compromise the biocompatibility of metallic implants. Voltages can also be controlled to modulate cell function and fate. The in vitro effect of static voltages on the behavior of MC3T3-E1 pre-osteoblasts cultured on CoCrMo alloy (ASTM-1537) was studied to determine the range of cell viability and mode of cell death beyond the viable range. Cell viability and morphology, changes in actin cytoskeleton, adhesion complexes and nucleus, and mode of cell death (necrosis, or intrinsic or extrinsic apoptosis) were characterized at different voltages ranging from −1000 to +500 mV (Ag/AgCl). Moreover, electrochemical currents and metal ion concentrations at each voltage were measured and related to the observed responses. Results show that cathodic and anodic voltages outside the voltage viability range (−400 < V < +500) lead to primarily intrinsic apoptotic and necrotic cell death, respectively. Cell death is associated with cathodic current densities of 0.1 μA cm−2 and anodic current densities of 10 μA cm−2. Significant increase in metallic ions (Co, Cr, Ni, Mo) was seen at +500 mV, and −1000 mV (Cr only) compared to open circuit potential. The number and total projected area of adhesion complexes was also lower on the polarized alloy (p < 0.05). These results show that reduction reactions on CoCrMo alloys leads to apoptosis of cells on the surface and may be a relevant mode of cell death for metallic implants in-vivo.

Keywords
  • Apoptosis,
  • Cell morphology,
  • Cell viability,
  • Cobalt alloy,
  • Corrosion
Disciplines
Publication Date
September, 2012
Publisher Statement
Haeri, Morteza, Torsten Wӧllert, George M. Langford, and Jeremy L. Gilbert. “Electrochemical Control of Cell Death by Reduction-Induced Intrinsic Apoptosis and Oxidation-Induced Necrosis on CoCrMo Alloy in Vitro.” Biomaterials 33, no. 27 (September 2012): 6295–6304. doi:10.1016/j.biomaterials.2012.05.054.
Citation Information
Morteza Haeri, Torsten Wӧllert, George M Langford and Jeremy L Gilbert. "Electrochemical control of cell death by reduction-induced intrinsic apoptosis and oxidation-induced necrosis on CoCrMo alloy in vitro" Biomaterials Vol. 33 Iss. 27 (2012)
Available at: http://works.bepress.com/george_langford/12/