Skip to main content
Article
Voltage-controlled cellular viability of preosteoblasts on polarized cpTi with varying surface oxide thickness
Bioelectrochemistry (2013)
  • Torsten Wollert, Syracuse University
  • Morteza Haeri, Syracuse University
  • George M Langford, Syracuse University
  • Jeremy L. Gilbert, Syracuse University
Abstract

Cathodic voltage shifts of metallic biomaterials were recently shown to induce cell apoptosis in-vitro. The details of the reduction-based physico-chemical phenomena have not yet been fully elucidated. This study shows how surface oxide thickness of commercially pure titanium affects the voltage viability range, and whether anodic oxidation can extend this range. Cell viability, cytoskeletal organization, and cellular adhesion on bare and anodized Ti, at − 500, − 400 mV(Ag/AgCl) and open circuit potential were assessed. Surfaces were characterized using contact angle measurement and atomic force microscopy, and the observed cellular response was related to the changes in electrochemical currents, and impedance of the samples. Results show that anodization at 9 V in phosphate buffer saline generates a compact surface oxide with comparable surface roughness and energy to the starting bare surface. The anodized surface extends the viability range at 24 h from − 400 mV(Ag/AgCl) by about − 100 mV, which corresponds to an increase in impedance of the surface from 58 kΩ cm2 to 29 MΩ cm2 at − 400 mV(Ag/AgCl) and results in low average current densities below 0.1 μA cm− 2. The results demonstrate that the voltage range for cell viability under cathodic polarization is expanded due to anodization of the surface oxide and lowering of cathodic currents.

Keywords
  • Titanium; Cathodic polarization; Cell viability; Anodization
Disciplines
Publication Date
December, 2013
Publisher Statement
Haeri, Morteza, Torsten Wöllert, George M. Langford, and Jeremy L. Gilbert. 2013. “Voltage-Controlled Cellular Viability of Preosteoblasts on Polarized cpTi with Varying Surface Oxide Thickness.” Bioelectrochemistry 94 (December): 53–60. doi:10.1016/j.bioelechem.2013.06.002.
Citation Information
Torsten Wollert, Morteza Haeri, George M Langford and Jeremy L. Gilbert. "Voltage-controlled cellular viability of preosteoblasts on polarized cpTi with varying surface oxide thickness" Bioelectrochemistry Vol. 94 (2013)
Available at: http://works.bepress.com/george_langford/10/