A Unified Topological Approach to Electromagnetic Environmental Effects Protection

George H Baker, James Madison University
J. Philip Castillo
Edward F. Vance

Available at: https://works.bepress.com/george_h_baker/16/
A Unified Topological Approach to Electromagnetic Environmental Effects (E³) Protection

EMP and EMC for Civil Systems Session

GEORGE H. BAKER, DNA
J. PHILIP CASTILLO, LOGICON RDA
EDWARD F. VANCE, SRI INTERNATIONAL

2nd International Symposium on Electromagnetic Compatibility (EMC) and Electromagnetic Ecology (EME)

St. Petersburg, Russia

26-30 June 1995
OUTLINE

- Motivating factors
- Examples of EM effects
- Dominant EM effects concept
- Technical basis
- Generalized approach
- Summary
MOTIVATING FACTORS

- Reduction of costs and increased value of system acquisition
- Systems with multiple EM effects requirements
- Growing dependence on electronics of increasing susceptibility
- Consolidation of EM design / protection standards
- Consolidation of test requirements and test facilities
- Development of consistent commercial and military EM standards
- Potential for considerable cost savings
EXAMPLES OF EM EFFECTS

- TEMPEST
- HPM, UWB
- EMP
- HEMP
- SREMP
- SGEMP / IEMP
- DEMP
- Lightning
- ESD
- EMC / EMI
- ECM / ECCM
- EMR (O/H)
- RADHAZ, HERO
EXAMPLES OF EM EFFECTS:

HPM

Typical HPM parameters:
- Frequency range: 0.3 to 10 GHz / 100 GHz
- Pulse width: nanoseconds to microseconds
- Peak power: 0.1 to 10 GW
- Repetition rate: 10 to 100 Hz

Impacts wide spectrum of systems
EXAMPLES OF EM EFFECTS:

NUCLEAR EMP

- Produced by high altitude (> 40 km) burst
- Time-domain peak electric fields of 50 kV/m
- Frequency components to 100 MHz
- Affects wide spectrum of systems
- Wide area coverage
Expected cost of failure = expected failure rate \times \text{cost per failure}

- Define the EM effects with the greatest expected failure cost as the Dominant EM effects
- Goal is to reduce expected cost to acceptable level
- The acceptable cost level threshold may occur when \(\Delta \text{cost of protection} \approx \Delta \text{cost of failure without protection} \)
DEFENSE NUCLEAR AGENCY

TECHNICAL BASIS

- Define applicable EM effects and determine those that dominate

- A single generalized barrier can moderate the Dominant EM effects
 - Barrier may be shaped or distributed as required
 - Penetration protection provided
 - Validation testing requirements are a function of barrier design and acceptable risk

- Difficulties
 - Very wide EM effects amplitude and frequency coverage
 - Large variation of equipment technology, location, and function
 - EM effects sources may be located externally or internally
Designs exist that employ shielding and TPDs for protection from individual threat environments.

Therefore, it is conceptually feasible to combine them into a single integrated protection design.

The challenge is to reduce redundancy in order to reduce costs through:
- Selecting the Dominant EM effects
- Common design
- Common validation testing
- Maintenance
- Balancing the cost of implementing protection with the cost of failure
A system may be viewed as being adequately protected if

System EM effects strength > system EM effects stress + margin

- System EM effects strength determined by critical subsystem susceptibilities
- System EM effects stress based on defined Dominant EM effects
- The selected margin depends on system function criticality and failure cost. Quantitatively, it also depends on stress and strength uncertainties
TECHNICAL BASIS
PENETRATING STRESS VS. FREQUENCY

<table>
<thead>
<tr>
<th>Penetration Category</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive (TEM)</td>
<td>Low kHz to MHz: Most important at lower frequencies (\text{Varies as } 1/\sqrt{f})</td>
</tr>
<tr>
<td></td>
<td>Intermediate MHz to GHz: N/A</td>
</tr>
<tr>
<td></td>
<td>High GHz and Up: N/A</td>
</tr>
<tr>
<td>Aperture</td>
<td>Most important at higher frequencies (\text{Increases with } f)</td>
</tr>
<tr>
<td>Deliberate Antenna</td>
<td>In-band and out-of-band dependence</td>
</tr>
<tr>
<td>Diffusion</td>
<td>Varies as (\exp(-\sqrt{f}))</td>
</tr>
<tr>
<td></td>
<td>Usually small to negligible for good conductors</td>
</tr>
</tbody>
</table>
OPTIONS FOR ALLOWABLE RESIDUAL LEVELS

TECHNICAL BASIS

- Transient stress burnout
- Rated power (manufacturer-specified)
- Operating signal level
- Normal operating noise level

Increasing residual stress

Decreasing risk
TECHNICAL BASIS
SYSTEM VOLUME AND SURFACE TOPOLOGY (GENERAL)

- Topological levels of protection
 - System Level
 - Subsystem Level
 - Box Level
 - Component Level

Exterior Region V_0

Communication Lines

Antenna

System Power

Power Line

Aperture (Doors, Windows, Etc.)

Outer Surface S_1
<table>
<thead>
<tr>
<th>Shielding</th>
<th>Filters</th>
<th>Nonlinear devices</th>
<th>Fiber Optics</th>
<th>Other materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightweight materials, continuous metal</td>
<td>Narrow, intermediate, and wide band, low insertion loss Moderate to high current capacity (tens to hundreds of kiloamperes)</td>
<td>Fast switching (nanoseconds to subnanoseconds) Moderate to high current capacity (tens to hundreds of kiloamperes)</td>
<td>Small signal, wide band (hundreds of megahertz to a few gigahertz) (characteristics depend on system functional design)</td>
<td>Dielectric isolation Rugged, weatherproof</td>
</tr>
<tr>
<td>MOVs Sparkgaps Zeners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL BASIS

VALIDATION LEVELS (DEGREES)

- Can tolerate failures/repairable
- High failure rate intolerable
- Low tolerance for failure

Tolerance for failure \(\alpha = \frac{1}{\text{cost of failure}} \)

- No test (use operating experience)
- Single sample test (test one item, assume all others the same)
- Large sample and life-cycle surveillance
<table>
<thead>
<tr>
<th>Relative Test Cost</th>
<th>Highest</th>
<th>Medium</th>
<th>Lowest</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsystem Level</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box Level</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Selected Hardening Topology</td>
<td>Box</td>
<td>Subsystem</td>
<td>System Level</td>
</tr>
</tbody>
</table>

For medium-to-large size systems with a large number of boxes.
GENERALIZED PROTECTION APPROACH

- Define system EM effects requirements
- Determine tolerance to system effects
- Identify and prioritize Dominant EM effects
- Develop system topological protection approach
- Design and install protection
- Validate protection
- Maintain over system lifetime
SUMMARY

- Unification of EM effects protection is vital to system reliability and is cost-effective
- Protection and validation technologies exist - no major development required
- Challenge will be to define Dominant EM effects based on system requirements and acceptable costs
- Validation testing requirements are a strong function of the topology selected
- Both military and commercial hardware must be considered