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A B S T R A C T

Previous studies have shown that weeding a library collection benefits patrons and increases circulation rates.
However, the time required to review the collection and make weeding decisions presents a formidable obstacle.
This study empirically evaluated methods for automatically classifying weeding candidates. A data set con-
taining 80,346 items from a large-scale weeding project running from 2011 to 2014 at Wesleyan University was
used to train six machine learning classifiers to predict a weeding decision of either ‘Keep’ or ‘Weed’ for each
candidate. The study found statistically significant agreement (p=0.001) between classifier predictions and
librarian judgments for all classifier types. The naive Bayes and linear support vector machine classifiers had the
highest recall (fraction of items weeded by librarians that were identified by the algorithm), while the k-nearest-
neighbor classifier had the highest precision (fraction of recommended candidates that librarians had chosen to
weed). The variables found to be most relevant were: librarian and faculty votes for retention, item age, and the
presence of copies in other libraries.

Introduction

As library collections grow and patron needs evolve, there is an
ongoing need for reviewing and maintaining physical collections. A key
component of this process is weeding, the selective removal of items
that are outdated, physically worn, no longer relevant to patron inter-
ests and needs, and/or available in electronic form. Librarians generally
agree that weeding benefits not only the library by reducing the number
of items that have to be maintained, but also the user population by
making desired items easier to find (Dilevko & Gottlieb, 2003). There is
also a general belief that pruning the collection to remove unwanted
items can increase library circulation rates, although experimental
studies assessing the effect of weeding on circulation have yielded
mixed results (Moore, 1982; Roy, 1987; Slote, 1997). Weeding creates
space that can be used for new acquisitions or to support other library
needs, such as programming, maker spaces, or study areas (Lugg, 2012;
Slote, 1997). Despite these benefits, weeding is often low on the priority
list for busy librarians. Only 24% of libraries weed continuously, and
39% weed at regular intervals (Dilevko & Gottlieb, 2003).

Multiple factors contribute to librarians' reluctance to weed their
collections. Weeding provides no immediate observable benefit. As
noted by Dilevko and Gottlieb (2003), weeding can impose a psycho-
logical strain on those tasked to implement it, and many librarians find
it stressful to make the decision to discard an item. One of the largest

obstacles is that weeding is extremely time-consuming. Making a de-
cision about a single title can take several minutes (Zuber, 2012), and
the amount of reviewing that can be done is limited by the number of
people who can devote time to the task. Large-scale weeding projects
can require reviewing tens of thousands of titles, and the weeding
project can take years to complete. For example, Concordia University
reviewed 25,000 books per year for two years, weeded a total of 12,172
items before deciding that this level of review “could not be main-
tained” and consequently reduced the review rate by 50% (Soma &
Sjoberg, 2010). Monmouth University librarians took two years to re-
view 72,500 items and select 12,800 for removal (Dubicki, 2008).
Rollins College weeded 20,000 from a collection of 286,000 items over
two years (Snyder, 2014). Wesleyan University weeded 46,000 of ap-
proximately 90,000 candidates over three years, from 2011 to 2014.
They began by identifying 90,000 weeding candidates that were re-
viewed individually by the librarians and then reviewed again by in-
terested faculty members (Tully, 2011). The project involved 17 li-
brarians, two consultant subject specialists, and approximately 20 staff
members, plus two new employees (a reference librarian and a staff
member) who were hired specifically to support the project (P. Tully,
personal communication, October 16, 2014).

One possible way to remove the time obstacle and reduce librarians'
psychological stress is automation. Existing methods (e.g., Lugg, 2012;
McHale, Egger-Sider, Fluk, & Ovadia, 2017) enable librarians to specify
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a set of weeding criteria and apply them to a library's circulation re-
cords to generate the initial list of weeding candidates automatically.
Each candidate is manually reviewed and marked ‘Keep’ or ‘Weed’.
However, for the purposes of weeding, each candidate that is labeled
‘Keep’ on the initial list represents an unproductive expenditure of the
librarian's time. An ideal candidate list would be one that contains only
items that the librarian would agree to weed. There is potential for
significant time savings if an automated method could be employed to
filter and refine the list of weedable candidates.

This paper reports on an experimental study that was designed to
assess the potential of improving weeding efficiency by using a data
mining approach. Specifically, using existing records from the Wesleyan
University Library's weeding project, a set of automated classifiers
based on different machine learning algorithms were trained to predict
the librarians' weeding decisions. The study found statistically sig-
nificant agreement between the automated classifiers' predictions and
the librarians' weeding decisions.

Prior work on weeding library collections

There are two primary approaches to weeding a collection: inclusive
and exclusive. The inclusive approach considers each item in turn to
decide whether it should be weeded or kept (Soma & Sjoberg, 2010;
Tully, 2011), as exemplified by the widely employed Continuous Re-
view, Evaluation, and Weeding (CREW) method (Larson, 2012). In
contrast, the exclusive approach first identifies the “core collection” for
the library and then weeds items that fall outside of this subset
(Trueswell, 1966). In either approach, the weeding process ultimately
comes down to deciding if a given item ought to be removed or not
based on criteria typically formulated in terms of some conditional
factors and instilled in the library's collection development/weeding
policy.

Factors in weeding decisions

According to Dilevko and Gottlieb (2003), the criteria most often
used by librarians to make weeding decisions were circulation statistics,
the physical condition of the item, and the accuracy of its information.
This is consistent with the CREW method's advice to weed items with
low circulation, poor appearance, or poor content (Larson, 2012) and
the methods used by previous weeding projects such as those of the
University of Toledo (Crosetto, Kinner, & Duhon, 2008), Concordia
University (Soma & Sjoberg, 2010), and Rollins College (Snyder, 2014).
A summary of the criteria used by several weeding projects to identify
candidates is given in Appendix A. The following sections examine each
of the key factors in weeding decisions identified from the literature.

Circulation records
Many weeding efforts are motivated by the empirical observation

that a large fraction of the library collection never circulates (Kent
et al., 1979; Silverstein & Shieber, 1996; Soma & Sjoberg, 2010). Non-
circulating items can be a liability for libraries in that they consume
shelf space and resources but do not directly benefit patrons. They also
reduce the library's overall circulation rate. High circulation is valued
by librarians because it contributes to a feeling that the library is
“serving its community well” (Dilevko & Gottlieb, 2003, p. 93).

Slote (1997) surveyed the literature on weeding and found that past
use of items consistently emerged as the best single criterion for making
weeding decisions. One way to characterize past use is the measure of
an item's “shelf-time”, i.e., the length of time that has elapsed since the
item last circulated. Slote advocated shelf-time as the most reliable
criterion for determining objectively which books could be weeded
with the least impact on patron needs. In his own 1969 study of five
libraries, he found that “past use patterns, as described by shelf-time
period, are highly predictive of the future use, and can be used to create
meaningful weeding criteria” (p. 63). However, Goldstein (1981)

studied eleven libraries and found that none of them took shelf-time
into consideration when making weeding decisions, although they did
employ use statistics (e.g., number of checkouts) as a weeding criterion.
Others have argued that demand (number of checkouts per year) may
be more informative than shelf-time (Snyder, 2014).

Circulation records alone may be insufficient for making informed
weeding decisions. Some studies found that in-house use mirrors that of
circulation, while others found that they could be quite different. Selth,
Koller, and Briscoe (1992) found that 11% of the books in their library
had in-house use but zero circulation. Weeding based only on circula-
tion records could potentially remove these items despite their evident
popularity and utility for visiting patrons (Slote, 1997). The process of
weeding requires the examination of these and other additional factors,
which increases the time required to evaluate weeding candidates ac-
curately.

Physical condition
Libraries seek to provide materials that are in a useful state. Items

that have been damaged (e.g., food spills, ripped pages, water damage,
weakened spines, missing pages) are less valuable to patrons and may
even become unusable. As items age, they become more vulnerable to
physical decay and damage. Sometimes items can be repaired. If they
are deemed unusable, the library must decide whether to simply discard
the item or to replace it based on the value of its content to the user
community.

Quality of content
The CREW manual identifies six negative factors that relate to the

quality of an item's content and summarizes them with the acronym
“MUSTIE” (Larson, 2012, p. 57). These negative factors are: Misleading
(or factually inaccurate), Ugly (worn), Superseded, Trivial (no longer of
literary or scientific merit), Irrelevant (to the user community), or the
same information can be easily obtained Elsewhere (e.g., interlibrary
loan or electronic format).

Additional factors
Several other factors may be used by librarians in making weeding

decisions. They may consider whether the item is a duplicate of other
items in the same collection and whether it is held by other libraries or
available in digital form (Metz & Gray, 2005). They may consult book
reviews or canonical bibliographies, assess local relevance, track in-
house use of the item, and consider unique features of the book. Soma
and Sjoberg (2010) developed a standard checklist to be used by all
librarians participating in a collaborative weeding effort. The checklist
included circulation and browse statistics as well as an indication of
whether the item appeared in Resources for College Libraries and how
many copies were held by other libraries.

Faculty input
Weeding is not always viewed favorably by library patrons, and

involving them in the process is helpful. For academic libraries, some
faculty members may oppose the entire project and refuse to sanction
the removal of any titles. Some are concerned about the loss of the
scholarly record or institutional prestige (Dubicki, 2008). In a psycho-
linguistic analysis of relevant literature, Agee (2017) identified several
negative emotions expressed in faculty responses to weeding projects,
which include anger, sadness, and anxiety, in decreasing order of oc-
currence. Public library patrons may disapprove of discarding items
purchased with tax dollars. To overcome opposition to weeding, li-
brarians often devote time to educating and involving patrons. For
example, Wesleyan University librarians attended several faculty
meetings and set up a website for interested faculty to review the
candidates and vote on which ones should be retained (Tully, 2012).
Olin Library at Rollins College also invited patrons to participate in the
weeding process. Weeding candidates were flagged but remained on the
shelf for two months, during which time faculty members were
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encouraged to browse and remove the flag of any book they wanted to
keep (Snyder, 2014). Librarians at Virginia Tech worked to head off
criticism by publicizing weeding criteria in advance and inviting in-
terested faculty members to review weeding decisions until they were
comfortable with the results (Metz & Gray, 2005).

Automation attempts

To reduce the time required for weeding, systems have been developed
to aid in compiling the initial list of weeding candidates (Lugg, 2012).
These systems require that the librarian specify a set of weeding rules that
define which items shall be considered to be weeding candidates. A
commercial service such as Sustainable Collection Services (SCS) (Lugg,
2012) applies these rules to the collection and iterates, sometimes many
times, with the librarians until the list of candidates appears satisfactory in
terms of its summary statistics (e.g., number of candidates identified).
McHale et al. (2017) developed an interactive spreadsheet that linked
candidates to external resources such as WorldCat, Amazon.com, and
Wikipedia to streamline the manual review process.

The initial list of candidates generated with these approaches may
still be overwhelmingly long, containing tens or hundreds of thousands
of items that require review. A possible approach to help prune or
prioritize the list is to employ machine learning; that is, to construct a
computational model of human weeding decisions that can be applied
automatically to new items. Silverstein and Shieber (1996) experi-
mented with a similar idea by employing a machine classifier to predict
future demand for individual books. Their goal was to support an off-
site storage program and to minimize the number of patron requests for
items in storage. They evaluated several strategies for predicting future
use. The best single criterion was the number of times the item had been
checked out in a ten-year period preceding the prediction period, and
the next best was the number of months since the item's last checkout,
akin to Slote's (1997) shelf-time. When only a few items were chosen for
off-site storage, incorporating knowledge about the LC classification of
the item increased prediction performance, but when selecting larger
groups it was less reliable and sometimes decreased performance. The
best result was obtained using a decision tree classifier, which reduced
the number of off-site item requests by 82%, compared to storage se-
lection based only on previous use statistics. While this classifier was
designed to support off-site storage decisions, the same approach could
be employed to predict which books may be weeded. However, to the
best of our knowledge, a machine learning approach to weeding has not
yet been investigated, and it is not known which machine learning
model provides the best performance or which variables are most re-
levant. Silverstein and Shieber's (1996) result suggests that methods
employing multiple variables are likely to yield the best performance.

Machine learning classifier methods

This study examined five major types of machine learning classifiers
that can be employed to predict weeding decisions. Different types of
classifiers employ different model representations, and they possess
different strengths and weaknesses, as explained below.

Nearest-neighbor classifier

The simplest approach to classifying an item is to identify the most
similar examples previously classified and use them to predict the class
of a new item. A nearest-neighbor classifier accumulates a database of
classified examples and classifies a new item by selecting the most
common label in the k most similar examples (Cover & Hart, 1967). The
strengths of the nearest-neighbor classifier are: (1) it is fast to construct,
since no explicit model need be trained; (2) it makes no assumption
about the distribution of classes in the feature space; and (3) its pre-
dictions are easy to explain by displaying the k examples that were used
to label the new item. Its major weakness is that the time required to

classify a new item increases with the size of the training data set, since
all examples must be considered to find the k most similar examples.
For a large data set, this classifier can be very slow.

Naive Bayes classifier

The naive Bayes classifier uses a probabilistic model of data and
labels to predict the most likely label for a new item (Duda & Hart,
1973). The “naïve” assumption that the variables are not correlated
does not always hold, but in practice, naive Bayes often still performs
well. The strengths of the naive Bayes classifier are: (1) it has a prob-
abilistic foundation, so it naturally provides a posterior probability for
each prediction that is made; (2) it can accept numeric or categorical
inputs; and (3) there are no parameters to specify. Its primary weakness
is that for its predictions to generalize well, the distribution of classes in
the training data set must be consistent with the true probabilities of
those classes to be observed in new data.

Decision tree

A decision tree creates a series of hierarchically organized tests such
that a new item can be classified by applying the tests in order
(Quinlan, 1986). This is the model that was employed by Silverstein
and Shieber (1996) to predict future demand for books. Parameters to
specify include the criterion used to select the best test at each node, the
maximum tree depth, and the maximum number of variables to con-
sider for each split. The strengths of the decision tree approach are: (1)
it generates an easy-to-understand model that can explain how each
prediction was made by simply tracing through the tree, and (2) it can
accept numeric or categorical inputs. Its primary weakness is that its
posterior probability estimates are usually not very reliable because
they are often calculated from the fraction of examples that reach a
given leaf node, which may be a very small sample.

Random forest

A random forest is a collection of decision trees that vote on the
classification decision (Breiman, 2001). The forest is “random” in that
each individual decision tree is trained on a data set that was sampled
randomly, with replacement, from the full data set. The collective de-
cisions made by a random forest are more reliable than those made by a
single decision tree (the ensemble effect). Random forests can accept
numeric or categorical inputs. Parameters are the same as for a single
decision tree, plus the number of trees in the forest. The strengths of a
random forest are: (1) it provides more robust decisions due to its en-
semble nature, and (2) it can generate a reliable posterior confidence
value. Its main weakness is that because it is composed of many in-
dividual models, its interpretability is diminished compared to a single
decision tree.

Support vector machine

Support vector machines (SVMs) identify a subset of the training
data as the “support vectors”, which are the items that most strongly
constrain a consistent model of output decisions (Cortes & Vapnik,
1995). The support vectors for the weeding problem will consist of
those items from the data set that are most difficult to decide whether to
weed or keep. SVMs require that all inputs be numeric. Parameters to be
specified include the type of kernel (item similarity) function K (linear
or Gaussian) and a regularization parameter C to help avoid over-fitting
to the training data. The strengths of SVMs are: (1) they are computa-
tionally efficient, especially for large data sets, and (2) they have good
generalization performance on a wide range of problems. Their major
weakness is the lack of interpretability for predictions. SVMs are gen-
erally treated as black boxes that generate predictions without any
explanation or justification.
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Definition of research problem

This research was motivated by the desire to identify automated
methods to improve the efficiency of weeding. This section first de-
scribes the role of machine learning in weeding projects and then de-
fines the research questions that drove the study.

Machine learning to assist weeding decisions

Weeding decisions are complex and involve both objective and
subjective factors (Slote, 1997). While shelf-time can be a strong pre-
dictor of future demand for an item, and therefore its potential for being
withdrawn (Slote, 1997), other factors such as physical condition of the
item and the accuracy of its information also come into play (Dilevko &
Gottlieb, 2003; Larson, 2012; Soma & Sjoberg, 2010). Ranking candi-
dates based on a single factor would fail to capture the complexity of
the decision process. In addition, weeding decision making also varies
between different libraries, both when defining the criteria for identi-
fying weeding candidates and when making final weeding decisions.
Individual libraries prepare custom checklists for staff members to
apply when weeding items from their collection (Dubicki, 2008; Soma
& Sjoberg, 2010). Therefore, any automation that is used to assist in the
weeding project must adapt to local library priorities and preferences.

Making weeding decisions can be viewed as a binary classification
problem (‘Weed’ or ‘Keep’). Machine learning provides the ability to
train a custom model for any given library using past decisions and then
apply it to new items, making predictions that are consistent with past
practices (Mitchell, 1997). In this way, a machine learning model can
provide the flexibility to accommodate individual libraries' weeding
criteria. Machine learning models also naturally accommodate the in-
corporation of multiple variables into the trained model. This study
sought to evaluate whether such classifiers could produce sufficiently
reliable and accurate predictions of weeding decisions, by addressing
these research questions:

R1. Can machine learning classifier methods predict librarians'
weeding decisions with sufficient accuracy?

To be of use, it is not necessary for the classifier to have perfect
agreement with a librarian on all decisions, since the goal is not to
replace the librarian with the classifier, but rather to construct an item
evaluation tool, as suggested by Goldstein (1981). The classifier's pre-
dictions can be used to prioritize (rank) or shorten (filter) the list of
weeding candidates, which are then reviewed and confirmed by a li-
brarian. A prioritized list enables the librarian to review first the items
most likely to be weeded.

R2. Which factors are most relevant for making the best predictions
of librarians' weeding decisions?

According to Slote (1997), the criteria most commonly used to make
weeding decisions include: physical appearance, duplicate volumes,
poor content, foreign language, item age, and circulation statistics.
Physical appearance, content, and circulation correspond to the criteria
advocated by the CREW method (Larson, 2012) and the most common
ones reported by librarians (Dilevko & Gottlieb, 2003). Information
about an item's physical condition and the quality of its content is not
likely to be available in a weeding data set, but circulation statistics are
recorded by all libraries in some form. Information about item age, its
availability in digital form, and its presence in other libraries is also
readily available. Identification of the most relevant factors is necessary
to ensure that future weeding projects collect the right information for
each candidate.

Research hypothesis

The major hypothesis that was tested in this experimental study is
stated in both null and alternative forms as follows.

• H0: There is no statistically significant agreement between li-
brarian and classifier weeding decisions based on item age, circulation,

availability in digital form, and presence in other libraries.
• Ha: There is statistically significant agreement between librarian

and classifier weeding decisions based on item age, circulation, avail-
ability in digital form, and presence in other libraries.

Research design and methods

This study employed a somewhat unusual experimental design.
Conceptually, the experiment can be visualized as a single-group multi-
treatment design with repeated measures. The collection of weeding
candidates served as a sample of experimental subjects, the weeding
decisions made by librarians or classifiers as treatments, and the binary
status of weeding candidates (‘Weed’ or ‘Keep’) as the dependent
variable. In fact, the treatment of predicting with machine learning
classifiers consists of multiple levels itself, each corresponding to a
different type of machine learning classifier: nearest-neighbor, naïve
Bayes, decision tree, random forest, or support vector machine (with
linear and Gaussian kernels). Instead of testing for significant differ-
ences between treatments in a dependent variable, the statistical ana-
lyses tested for significant agreement between the librarians' and clas-
sifier-generated weeding decisions.

Data set of weeding decisions

The study was structured as a retrospective analysis of data col-
lected by the Wesleyan University Library as part of a large-scale
weeding project that took place from 2011 to 2014 under the direction
of the Wesleyan University Librarian, Pat Tully (Tully, 2014). The
Wesleyan data set, provided by the Wesleyan Library for the study in
March 2015, contained 88,491 weeding candidates. Each item was
marked to indicate whether it was withdrawn or kept as a result of the
weeding project.

The criteria used to generate the list of weeding candidates were as
follows (Tully, 2011): (1) publication date before 1990, (2) acquisition
date before 2003, (3) no checkouts since 2003, (4)≤ 2 checkouts since
1996, (5) held by>30 other U.S. libraries, and (6) held by ≥2 partner
libraries (members of the CTW Consortium, which includes Connecticut
College, Trinity College, and Wesleyan University). To be included in
the list of candidates, an item had to satisfy all of the specified criteria.

Data set variables
The variables available for this study (see Table 1) were limited to

what was previously collected as part of the weeding project. The
Wesleyan University Library provided information for each item about
its publication year (used to calculate age), circulation history (check-
outs), how many other libraries held the same item (uslibs, peerlibs), and
whether the item was in the Hathi Trust (hathicopy, hathipub). Since
some of the classifiers in this study require that all inputs be numeric,
the study was limited to variables that were naturally numeric or that
could be converted into a numeric representation. The variables

Table 1
Variables used to represent each weeding candidate.

Variable Description Type

age Number of years between Publication Year and 2012,
when the data was collected

Integer

checkouts Number of checkouts since 1996 Integer
uslibs Number of U.S. libraries with a copy of this item, based

on OCLC holdings records
Integer

peerlibs Number of peer libraries with a copy of this item, based
on OCLC holdings records

Integer

hathicopy Copyrighted digital version exists in the Hathi Trust? Boolean
hathipub Public domain digital version exists in the Hathi Trust? Boolean
facultykeep Number of Wesleyan faculty votes to keep the item Integer
librariankeep Number of Wesleyan librarian votes to keep the item Integer
decision ‘Keep’ or ‘Weed’ Boolean
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hathicopy and hathipub were converted to a representation in which
True= 1 and False= 0.

Some items had a date of last circulation, but most (77%) did not.
While methods exist for inferring missing values in a data set, they are
only appropriate if the value exists but is missing (not recorded). For
this data set, checkout dates are only available for items checked out
since 1996. The remaining items may have been checked out prior to
1996, or they may never have been checked out at all. With no valid
observations of checkouts prior to 1996, there is no principled way to
infer the possible checkout dates for those items. Since many of the
machine learning methods cannot operate on data with missing values,
the shelf-time variable (ideally to be derived from the last circulation
date) was excluded from modeling. It is very possible that higher per-
formance would be achieved if shelf-time information were available
for all items.

The Wesleyan data set contained information that covered only two
of the six categories of weeding criteria identified by Slote (1997). No
information was available about each item's physical condition, whe-
ther an item was a duplicate of another item, the quality of the item's
content, or whether the item was written in a language not commonly
used by patrons of the library. These factors may have been employed
by librarians in making their final decisions, but since they were not
recorded in the data set, they were not available for use by the machine
classifiers. Data on in-house use of the items were also unavailable.

The Wesleyan project was unusual in its large-scale involvement of
university faculty in the weeding decision making process. Faculty
members were invited to vote using a web interface on items that they
did not want to be withdrawn (Tully, 2012). The data set contained
information about the number of ‘Keep’ votes that each item received
from faculty members (facultykeep) as well as from librarians (librar-
iankeep). These variables can potentially capture indirect information
about an item's condition and subjective value.

Data set pre-processing
An initial assessment of data quality and the distribution analysis of

values for each variable identified some inconsistencies and errors in
the data set. The following steps were taken to correct and reduce the
data set: (1) One item (Germany's Stepchildren, by Solomon Liptzin) had
an invalid publication year of “5704”, and this value was replaced by
the correct value of “1944”; (2) Items that were marked as part of an
“enumeration” (series) were handled separately with different weeding
decision criteria during the Wesleyan weeding project, but the differ-
ence in criteria could preclude the learning of a consistent model, so
these items (n=8141) were excluded from the data set; (3) Four items
had a last circulation date prior to 1996, which was identified as an
error. These items were excluded from the data set as well. After these
adjustments, the data set contained 80,346 items.

Data set characteristics
The data set contained 48,445 (60.3%) items that were marked

‘Keep’ and 31,901 (39.7%) that were marked ‘Weed.’ The minimum,
mean, and maximum values for the three variables with more than two
distinct values are listed in Table 2.

Fig. 1 shows the distribution of values observed for these three
variables. Separate distributions are plotted for items marked ‘Keep’
and ‘Weed’. Fig. 1(a) shows that the distribution of ages for items
marked ‘Keep’ is shifted slightly lower (younger/newer) than for items

marked ‘Weed.’ Fig. 1(b) shows that the distribution of values for the
number of U.S. libraries holding the item is shifted slightly higher
(more holdings) for items marked ‘Weed.’ Fig. 1(c) shows that items
with any faculty votes at all are much more likely to be kept than
withdrawn.

Table 3 summarizes the distribution of ‘Keep’ and ‘Weed’ decisions
for variables that took on only two possible values. The checkouts
variable was dominated by items that had never been checked out, and
the probability of an item with 0 checkouts being withdrawn was much
higher. The peerlibs variable was less strongly aligned with the weeding
decision, but there was still a difference in outcome between items that
were held by two peer libraries and those held by three peer libraries,
with the latter less likely to be withdrawn. As shown in the variables
hathicopy and hathipub, items in the Hathi Trust were a bit more likely
to be held in copyright (57%) than to be in the public domain (13%),
and those held in copyright were more likely to be withdrawn. Finally,
5.5% of the items were marked to keep by librarians' votes (with value
1 for the librariankeep variable), of which only 31 items (0.7%) were
withdrawn despite the librarian ‘Keep’ vote; these were either lost or
duplicate items. This suggests a very strong correlation between li-
brarian votes and final decisions. Likewise, the items that received at
least one faculty vote of ‘Keep’ (> 0 for the facultykeep variable) were
very likely to be kept, and only 1.7% of these items were eventually
withdrawn.

Classifier training and evaluation

All machine learning classifiers need to be trained to develop an
internal model. During the training process, each classifier analyzes a
set of training data in which each item has been labeled with a human
classification decision (the dependent variable). Through training, the
classifier's internal model captures relationships between the in-
dependent (feature) variables and the dependent (prediction) variable.

The data set was divided randomly into two equal halves: Dt for
training and De for evaluation. Each machine learning classifier was
trained on Dt with known labels and then used to generate blind pre-
dictions for De. All of the variables were normalized to achieve a mean
value of 0 and a standard deviation of 1. The shifting/scaling coeffi-
cients were determined from Dt and then applied to De.

The parameters that were used to train each machine learning
classifier are summarized in Table 4. To select parameter values, three-
fold cross-validation was conducted on the data in Dt. That is, Dt was
further divided randomly into three folds, and a classifier was trained
on two of the folds and then evaluated on the third fold, which was not
used for training. This process was done three times, so that each held-
out fold was evaluated once. The parameter values that resulted in the
highest held-out performance (accuracy) were selected. For some
classifiers (linear and Gaussian SVMs), all specified parameter values
were tested; these classifiers are marked “All” in Table 4. For others
(marked “50R” or “100R”), only a fixed number (50 or 100) of ran-
domly selected parameter values within the specified range were
evaluated, due to computational cost. A final classifier of each type was
then trained on all of Dt using the selected parameter values.

Performance measures and significance testing

To compare the predictions generated by a classifier against the
decisions made by a librarian statistically for hypothesis testing, two
statistical measures of agreement, Yule's Q and the φ coefficient, were
employed. There is no single best measure of agreement that is widely
agreed upon for all possible types of data. However, Yule's Q and φ are
two widely used measures that factor in the amount of agreement that
would be expected by random chance, without an assumption of
Gaussianity.

Yule's Q (Yule, 1900) is based on the odds ratio of two outcomes
(agreement and disagreement) to enable the determination of whether

Table 2
General distribution of data set by three major variables.

Variable Units Minimum Mean Maximum

age years 23 57.59 400
uslibs libraries 31 544.66 7634
facultykeep votes 0 0.46 15
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the observed agreement is statistically distinguishable from random
chance. The φ coefficient (Yule, 1912) is an extension of Pearson cor-
relation to dichotomous (binary-valued) data: in this case, the two va-
lues are ‘Weed’ and ‘Keep’. Let the value a be the number of times that
the librarian and the classifier both voted to weed a particular item, and
d be the number of times they both voted to keep an item; these are the
agreements. Let b be the number of items that the librarian voted to
keep and the classifier voted to weed, and let c be the number of items
that the librarian voted to weed and the classifier voted to keep; these
are the disagreements. Yule's Q is defined as = −

+Q ad bc
ad bc ; the φ coeffi-

cient is calculated as = −
+ + + +

φ ad bc
a b c d a c b d( )( )( )( )

. Both values can be as-

sessed for statistical significance by a χ2 test with one degree of
freedom, which was done at the significance level of p=0.001.

The amount of agreement between librarian and classifier decisions
provides a quantification of the quality of the classifier judgments.

However, it does not distinguish between different kinds of disagree-
ments. Incorrect predictions of ‘Weed’ likely are worse mistakes than
incorrect predictions of ‘Keep’, but Yule's Q and the φ coefficient treat
both equally. To gain further insight into these types of errors, each
method was also assessed in terms of recall (R), precision (P), and ac-
curacy (A), which are defined respectively as: = +R a

a c ; = +P a
a b ; and

= +
+ + +A a d

a b c d . The statistical significance of the recall, precision, and
accuracy scores was assessed with a univariate χ2 analysis by testing
the observed values against those expected of a random process. The
expected values of recall, precision, and accuracy are 0.5, 0.4, and 0.5
respectively (see Appendix B for derivation and further details about
the χ2 testing).

Fig. 1. Distribution of items marked ‘Keep’ vs. ‘Weed’ for three variables: (a) age, (b) uslibs, (c) facultykeep.

Table 3
Variable-specific characteristics of data set.

Variable Value Frequency Percentage Weed Keep P(weed)

checkouts 0 61,993 77.16 25,252 36,741 0.41
1 18,353 22.84 6649 11,704 0.36

peerlibs 2 47,738 59.41 19,600 28,138 0.41
3 32,608 40.58 12,301 20,307 0.38

hathicopy False 34,660 43.14 12,531 22,129 0.36
True 45,686 56.86 19,370 26,316 0.42

hathipub False 69,997 87.09 27,932 42,045 0.40
True 10,369 12.91 3969 6400 0.38

librariankeep 0 75,926 94.50 31,870 44,056 0.42
1 4420 5.50 31 4389 0.01

facultykeep 0 56,451 70.26 31,503 24,948 0.56
> 0 23,895 29.74 398 23,497 0.02

Table 4
Classifier parameters and candidate values evaluated for optimization.

Classifier Parameter Candidate values

Nearest neighbor (100R) Number of neighbors k {1, 2, …, 199, 200}
Naive Bayes None
Decision tree (100R) Maximum tree depth {None, 3, 5}

Maximum number of
variables

{1, 2, …, 7, 8}

Split criterion Gini index or entropy
Random forest (50R) Maximum tree depth {None, 3, 5}

Maximum number of
variables

{1, 2, …, 7, 8}

Split criterion Gini index or entropy
Number of trees {10, 20, 50, 100,

500}
SVM (linear kernel) (All) Regularization parameter C 10

{−10, −9, …, 0, 1}

SVM (Gaussian kernel)
(All)

Regularization parameter C 10
{−10, −9, …, 0, 1}

RBF parameter γ 10
{−2, −1, 0, 1, 2, 3}
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Implementation

The experiment was implemented in Python, using a combination of
new code and the freely available scikit-learn library for implementing
the machine learning classifiers.

Parameter setting
After performing three-fold cross-validation on the training set Dt,

the parameter values were selected for each classifier as shown in
Table 5. The number of neighbors used by the nearest-neighbor clas-
sifier is quite high (165). This indicates that the items may not be neatly
divided into ‘Keep’ and ‘Weed’ groups. Instead, they are mixed together,
and a large number of neighbors is needed to get a robust vote on the
correct prediction. The naive Bayes classifier, as previously noted, does
not have any parameters to set.

The decision tree was allowed to use up to five variables (of the
eight available), and the maximum tree depth was also five (with no
pruning). In contrast, the random forest was composed of 100 trees,
each of which was only allowed to use three variables and to have a
depth of three. Shallower trees tend to generalize better to new data,
but they may miss finer nuances. Interestingly, the single decision tree
used the Gini Index to determine how to split nodes, while the random
forest used the entropy criterion. Either one is acceptable for decision
trees.

The linear SVM employed a regularization parameter (C) value of
0.001, which is very small. This signals that the data may not be well
modeled by a linear separation, which is consistent with the high k
value chosen by the nearest neighbor classifier. In contrast, the
Gaussian SVM selected a C value of 10, which means that its more
complex modeling yielded a better fit to the data. The Gaussian para-
meter (γ) was set to 10. This parameter is an intuitive measure of how
far the influence of a given example reaches in the feature space. A
value of 10 is medium-large, indicating a relatively small radius of in-
fluence for a given item. One can interpret this to indicate a hetero-
geneous feature space in which classes may be interspersed rather than
cleanly separated.

Learned models
As noted earlier, the nearest neighbor classifier does not learn an

explicit model, so there is no model to discuss. The naive Bayes model
consists of the conditional class probabilities for each variable, esti-
mated from the training data (given in Table 3). The support vector
machine models do not lend themselves well to interpretation, and they
are generally treated as black boxes that generate good predictions but
do not provide insights into the data being classified. Consequently, it is
only necessary to describe the learned decision trees here.

The top three layers of the trained decision tree are shown in Fig. 2.
The most likely outcome after three layers of testing (W= ‘Weed’ and
K= ‘Keep’), with its associated probability, is shown in the bottom row
of the diagram; the complete (five-layer) classifier conducts two more

layers of tests before classifying a given item. The first variable that the
classifier tests is librariankeep. If there is at least one librarian who voted
to keep the item, processing moves to the right sub-tree. There, if at
least one faculty member voted to keep the item, the age of the item is
tested. For all of the items that follow the first branch to the right, the
most likely outcome is ‘Keep’. There are very few exceptions; the
probability of ‘Keep’ ranges from 0.97 to 1.0.

If no librarians voted to keep the item, then the first left branch is
followed and the classifier likewise checks whether any faculty mem-
bers voted to keep the item. Any such votes lead to an age check, and
the most likely outcome is again ‘Keep’ with probability 0.98 to 0.99.
However, items that had neither a faculty vote nor a librarian vote to be
kept are most likely to be weeded. This left sub-branch is where most of
the complexity and uncertainty exists in the model. The probability of
the most likely outcome (‘Weed’) is higher for older items (those older
than 35.5 years), but the probability is still only 0.61, indicating that
there are many items in this group that should be kept. For younger
items, the probability of being weeded is not much more than random
chance (0.52). The next variable to be checked (not shown in the figure)
is checkouts, then uslibs and hathicopy. However, none of these checks
served to improve the separation of ‘Weed’ and ‘Keep’ items by much.
The structure of the tree is consistent with the individual variable as-
sessment. The librariankeep and facultykeep variables had the strongest
discriminatory power between the two classes, while the other vari-
ables provided less separation.

The random forest used an ensemble of 100 decision trees, which
would be tedious to examine individually. However, it also produced a
consensus estimate of the importance of each variable based on how
often it is employed in individual trees. The most important variable
was facultykeep (0.77), followed by librariankeep (0.19) and age (0.01).

Experimental results

Table 6 presents the results of performance testing for two baseline
approaches (keep all items, weed all items) and the six machine
learning classifiers. The best values are marked in boldface in each
column. If a column has multiple values marked in boldface, these
marked values are not significantly different from each other, as de-
termined by z-score tests with p=0.01.

For all the machine learning classifiers, the accuracy values were
found to be statistically significantly better than a random process
(χ2≥ 7827.0, p=0.001). They all achieved approximately the same
level of accuracy (~72%), well above the best baseline performance of
60.0%. However, a z-score test with p=0.05 found that there is no
significant difference in accuracy between classifiers. Their recall va-
lues were all significantly better than random (χ2≥ 21,889.3,
p=0.001), and so were their precision scores (χ2≥ 6286.1,
p=0.001). Finally, their φ and Yule's Q values of agreement were all
statistically significant (χ2 as listed in Table 6, p=0.001) as well, de-
spite the difference in their range of values. Both of the baseline ap-
proaches did significantly worse than a random process.

Although all classifiers reached about the same level of accuracy,
they did not all make the same type of errors. Recall varied noticeably
across classifiers, while precision showed little difference between them
(albeit statistically significant). This suggests that some classifiers were
better than others at correctly identifying items that should be with-
drawn, but all of the classifiers struggled to improve precision beyond
60%. That is, there are many items in the data set that should be kept
but are difficult to distinguish, given the variables available, from those
that should be withdrawn.

Specifically, the K-nearest-neighbor classifier had the lowest recall
(86.9%) but the highest precision (60.5%), which indicated that it was
more likely to predict ‘Keep’ mistakenly for an item that was actually
withdrawn, but its ‘Weed’ predictions were most reliable. This classifier
had significantly higher precision than the naive Bayes (z=3.18,
p=0.01) and linear SVM classifiers (z=3.18, p=0.01), and to a

Table 5
Parameter values selected for machine learning classifiers using cross-validation.

Classifier Parameter Best value

Nearest neighbor Number of neighbors k 165
Naive Bayes None
Decision tree Maximum tree depth 5

Maximum number of variables 5
Split criterion Gini index

Random forest Maximum tree depth 3
Maximum number of variables 3
Split criterion Entropy
Number of trees 100

SVM (linear kernel) Regularization parameter C 0.001
SVM (Gaussian kernel) Regularization parameter C 10

Gaussian parameter γ 10
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lesser degree than the decision tree (z=2.45, p=0.05) and Gaussian
SVM (z=2.00, p=0.05). In contrast, the linear SVM had the highest
recall (98.6%) but the lowest precision (59.4%), and the differences are
statistically significant in both cases (for recall, z≥ 6.69, p=0.01; for
precision, all but naïve Bayes and the decision tree, z≥ 2.20, p=0.05).
The linear SVM therefore was more likely to predict ‘Weed’ mistakenly
for an item that was actually kept.

The hypothesis behind this study was that machine learning clas-
sifiers could obtain a statistically significant level of agreement with
human weeding decisions. The null hypothesis was that there would not
be significant agreement. The φ and Yule's Q results in Table 6 cause us
to reject the null hypothesis. Although the two measures are not di-
rectly comparable in terms of their values, they ranked the methods
identically. The naive Bayes and linear SVM classifiers had the highest
φ values (0.552 and 0.557), and the difference was not statistically
significant at the p=0.01 level. The linear SVM had a significantly
higher Yule's Q value (0.978), compared to all other classifiers, for the
same p-value. The K-nearest-neighbor classifier had the lowest agree-
ment (φ of 0.486 and Yule's Q of 0.832).

Like accuracy, φ and Yule's Q do not distinguish between different
types of errors. In this study, it was found that both measures correlated
well with recall (r=0.918, 0.999 for φ and Yule's Q respectively) but
not with precision (r=0.196 for φ, and 0.003 for Yule's Q). Thus,
classifiers with high recall values tended to have higher agreement
values as well, regardless of their precision.

Findings and discussion

The experimental results indicate that the alternative hypothesis
should be accepted, i.e., there is statistically significant agreement be-
tween human decisions and automated classifier predictions. In fact,
there was significant agreement for all six classifiers that were tested,
based on the statistical results of two measures of agreement (φ and
Yule's Q).

In practice, one particular model would be selected and employed to
assist librarians in making weeding decisions in a given project. For the
purpose of refining the initial list of weeding candidates, precision is
more important than recall, since mistakenly discarding an item has
more impact than mistakenly keeping it. It is important that the pre-
diction of weeding any item is highly reliable. Problems with this kind
of asymmetric “cost” (impact of different types of errors) are common
in machine learning applications, and inspecting recall and precision
performance helps select the most appropriate model. This considera-
tion favors the K-nearest-neighbor classifier or the random forest, even
though they did not have the highest accuracy or agreement values.
However, these outcomes could change if the same experiment were
conducted with a different set of items or with data from another li-
brary. Fortunately, there is little cost to training and evaluating all
models on a new data set to enable a similar assessment and selection of
the most appropriate classifier.

Classifier precision may be improved by including more variables
(e.g., shelf-time and physical condition, in-house use) in the data set.
On the other hand, analysis of the learned models revealed that li-
brarian and faculty votes for retention emerged as the most relevant
variables, while item age and presence in other U.S. libraries were also
important.

One must interpret the agreement measurements carefully. To our
knowledge, quantitative assessment of agreement between librarians on
weeding decisions has never been attempted empirically. Since libraries
differ in their policies and individual librarians may differ in their ap-
plication of subjective criteria, it is likely that inter-librarian agreement
is not perfect. Thus, it is unknown what to consider as the best
achievable agreement in reality; probably not φ=1.0. Assessing
agreement between librarians would help interpret the classifier per-
formance in context.

Fig. 2. Top three layers of the learned decision tree model.

Table 6
Performance statistics of predicting weeding decisions by different classifiers. The best
result for each column is marked in bold. Multiple values are in bold if they are not
statistically significantly distinguishable.

Method Accuracy Recall Precision φ Yule's Q

value χ2 value χ2

Baseline (keep all) 0.600 0.000 0.000 N/A N/A N/A N/A
Baseline (weed all) 0.400 1.000 0.400 N/A N/A N/A N/A
K-nearest-neighbor 0.721 0.869 0.605 0.486 9965.8 0.832 217.0
Naïve Bayes 0.724 0.980 0.594 0.552 12,142.1 0.968 538.3
Decision tree 0.725 0.967 0.596 0.545 10,921.3 0.949 278.3
Random forest 0.724 0.919 0.601 0.516 12,066.1 0.887 446.5
SVM (linear) 0.725 0.986 0.594 0.557 12,329.4 0.978 645.2
SVM (Gaussian) 0.725 0.954 0.598 0.537 11,653.0 0.930 361.7
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Conclusion

Lack of time is cited as the biggest obstacle to effective weeding
projects (Dilevko & Gottlieb, 2003). Current automation to assist
weeding efforts is limited to the a priori specification of general
weeding rules that are used to generate a list of weeding candidates.
The time required to review the candidate list can be formidable, and
the project may require the efforts of a large number of staff members
to complete. Because collection review and weeding is relevant for all
libraries at some point, sometimes as a continual ongoing process
(Larson, 2012), methods that can further reduce the amount of human
effort required are vital.

This study produced the first empirical evidence of agreement be-
tween human weeding decisions and predictions by machine learning
classifiers. The learned models will not replace human processing, but
they can instead provide an initial assessment of the list of candidates,
which allows librarians to focus their time and attention on those items
most likely to be weeded. Because the weeding criteria are defined
differently in each library, and because weeding decisions often include
an element of subjectivity, it is unlikely that a generic classifier trained
on weeding decisions made at one library could be directly applied to
the collection at another library. Even within a given library, McAllister
and Scherlen (2017) suggest that different models may be needed for
individual disciplines or collections due to different patterns in book
use. It is recommended that each library label a relevant portion of their
weeding candidates, or compile past weeding decisions, to provide a
custom set of training examples.

Most classifiers, including those used in this study, output a pos-
terior confidence in their predictions as well as the binary outcome. The
librarian can filter the resulting list of candidates by specifying a
minimum confidence and generate a new list of only those with a
weeding prediction confidence greater than this threshold. For greater
flexibility, the entire candidate list may be sorted by posterior con-
fidence values, so that the librarian can start with the candidates most
likely to be weeded and work down the list as time permits.

There are several directions for further research on the best use of
machine learning classifiers to assist in weeding projects. First, it would
be valuable to determine the minimum number of librarian-labeled

examples needed to train a model sufficiently so that it can attain a
certain level of accuracy or agreement. In this study, half of the data set
was used to train each model, which amounted to>40,000 labeled
items. It is desirable to do the same evaluation with progressively fewer
labeled items, to determine whether the same performance could be
achieved with less up-front effort. Another promising area of in-
vestigation is the use of active learning (Cohn, Ghahramani, & Jordan,
1996). With active learning, the machine learning method starts with a
few labeled examples and then actively suggests which items the li-
brarian should label first to provide the most informative labeled ex-
amples. This strategy has been shown to reduce dramatically the
number of labeled items required. Second, one could assess whether
deep neural networks could provide a more accurate model than the six
classifiers examined in this study. Third, this study included only in-
formation about age, circulation, and other library holdings. As dis-
cussed earlier, there are several other potentially useful variables that
could not be evaluated in the present study. These include information
about the item's shelf-time, physical condition, quality of content, li-
brary in-house use, etc. A similar empirical study with a data set in-
cluding those variables would yield more definitive findings and de-
termine if improvement in classifier performance (if any) warrants the
cost of compiling additional data.

Ultimately, the goal is to facilitate weeding projects and reduce the
burden that they currently impose on librarians in terms of time and
effort. While most librarians feel that weeding is an important and
necessary process, the most common complaint is that it takes too much
time (Dilevko & Gottlieb, 2003). It may never be possible to fully au-
tomate the weeding process, but the use of automation to provide de-
cision support to busy librarians has the potential to reduce that burden
significantly.
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Appendix A. Weeding criteria used in prior weeding projects

Concordia University's Carl B. Ylvisaker Library employed the following variables during a weeding project that reviewed 25,000 items during
2007 and 2008 and removed a total of 12,172 (Soma & Sjoberg, 2010):

• Last circulation date

• Browse count

• Whether the item appears in Resources for College Libraries

• Whether there are more than five copies at other U.S. libraries

The article does not specify what thresholds were used to convert these variables into decision criteria.
The Olin Library at Rollins College conducted a weeding project from 2010 to 2012 that removed>20,000 items from the collection (Snyder,

2014). The criteria that they used to create the candidate list were:

• Acquired before January 1, 1996

• No in-house use or circulation since January 1, 1996

• >100 U.S. libraries hold the item

• Either the University of Florida or Florida State University holds the item

• Not in Resources for College Libraries or Choice Reviews

• Not about Florida (local interest)

All criteria had to be satisfied for an item to be included in the candidate list.
Wesleyan University created a list of ∼90,000 candidates using these criteria (Tully, 2011):

• Fewer than two checkouts since 1996

• Published before 1990

• Acquired before 2003
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• >30U.S. libraries hold the item

• At least two Wesleyan partner libraries hold the item

Again, all criteria had to be satisfied for an item to be included in the candidate list.

Appendix B. Expected values for performance measures and χ2 testing

Let N be the total number of items in the data set, Prand(W) be the probability that an item is marked ‘Weed’ by a random process, and Plabel(W) be
the probability that an item is labeled ‘Weed’ by a human. Since there are only two prediction outcomes, ‘Weed’ or ‘Keep’, Prand(W)=0.5. From our
analysis of the data set (Table 3), we know that Plabel(W)= 0.40. The expected number of items correctly predicted as ‘Weed’ (a) is
N× Prand(W)× Plabel(W). The expected number of items labeled ‘Weed’ by human decision (a+ c) is N× Plabel(W). Then the expected value of recall
is:
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Likewise, the expected value of precision is:

=
+

= ∙ ∙
∙

= ∙ ∙
∙

=E P E a
E a b

N P W P W
N P W

N
N

[ ] [ ]
[ ]

( ) ( )
( )

0.5 0.4
0.5

0.4rand label

rand

For a random predictor with two outcomes, the expected value of accuracy, E[A], is 0.5.
A non-parametric χ2 test was used to determine the statistical significance of each ratio value. The random process was modeled as generating a

binary variable with two possible outcomes. The predicted probability of each outcome, P(oi), was compared with its observed probability, O(oi):
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The calculated χ2 value was checked against a standard table of χ2 distribution values to determine the probability of observing the difference
between P(oi) and O(oi) by chance, which is the significance level (p-value) for the observed values.

To assess the statistical significance in differences in performance values (recall, precision, or accuracy) between two classifiers (V1 and V2), we
calculated a z-score based on the ratio of the observed difference to the standard error observed in the combined sample. Since the ratio scores are in
the range [0, 1], we first converted them into the range [0, 100] by multiplying each value Vi by 100. Let V be the average of V1and V2.
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−
z V V

V V(100 )N

1 2
2

The calculated z-score was checked against a standard table of z distribution values to determine the significance level (p-value).
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