Utah Valley University

From the SelectedWorks of Genan Anderson

Winter 1997

When a project doesn't end: reflections of a preschool teacher

Genan Anderson, Utah Valley University

Available at: https://works.bepress.com/genan_anderson/12/
When a project doesn’t end:

Reflections of a preschool teacher

by Genan T. Anderson

Today it’s a black cricket, yesterday it was a large grasshopper, the day before that we watched a praying mantis eat two crickets in a row. All of this is happening five weeks after we formally ended our study of bugs.
What are the children saying when they continue to maintain high interest in a topic well past our final activity for its study? When do we know it is time to move on? Or do we ever completely leave any topic children find relevant to their world?

A praying mantis has been almost a continuous classroom pet. It spends its weekends in the wild of our playground and sits quietly hidden among the leaves against our building every Monday morning. The children watch as it crawls on their hands and clothes, catches and eats the live crickets they put in its cage, and preens as it finishes a meal.

They hold and examine it as they did our lizard that ate our first praying mantis and in turn was eaten by our bullfrog. They even watch as the live crickets feed on the decaying carcasses of other crickets that died as a result of captivity.

On a walk to gather seeds, the children turn their attention to a large spider web stretched across the bank of a canal. They search until they spot the spider weaver and then scan the web for signs of the catch.

“What kind of spider is it?” they ask. “What does it eat?” Relentless, they search for answers.

“I didn’t find a moth yet,” reports J. Thomas, who has been successful in this search on many other days.

“How many kinds of moths lie flat against the sheds and building walls?” Our count is up to three, but we think it will go higher.

Spying a bucket full of ants, I ask two boys, “What are you doing?”

“Gathering ants to feed to Hairy (the pet tarantula),” one boy replies. Previously they had fed only crickets to the tarantula. But there is a slight problem.

“One of the ants just threw up. See! Right there,” says a boy whose classmate had just had a similar experience. A few minutes later they report that two ants are sick.

“What are you going to do now?”

“Well, when you’re sick, you need something to eat and something to drink, and you need your mama. We’ll put these two back in the ant hill and feed the rest of them to Hairy.”

While searching for our wild praying mantis, J. Thomas comes upon a paper wasp’s nest abandoned on the sidewalk. “Look! I found a honey bee nest. They put honey inside.” When his teacher explains that it is really a paper wasp’s nest, his explanation changes. “It’s a wasp’s nest for its babies to go inside.”

As educators, we often feel pressured to move quickly through each project, especially because we are teaching children who everyone knows have short attention spans. That may be true when we are “teaching” (disseminating information) but is seldom true when we are guiding their own discovery and helping them make sense of their complex world.
There are so many lessons in a single topic. Bugs, for us, have been an unavoidable topic because they seem all around and ever-present. Our student teachers left bugs and moved on to new projects. Why didn't that change the children's enthusiasm for the study of bugs? Are the children teaching us something about how to plan curriculum?

"You know why I brought the grasshopper? To feed to the spider," Ellie reports as she enters the classroom and goes straight to the insect cage to check on her grasshopper. So we place the grasshopper into Hairy's cage and watch.

Our goal is to kindle children's thirst for learning, fan their questioning, and channel it into texts and experiments that will help them be successful in finding answers. As educators of young children, we need to be prepared to meet children where their interest lies today.

"Why is he so hairy?" Ellie asks. We pull out our book on spiders. As we search the pages for the answer, we discover that spiders have six joints in each leg, which adds up to 48 joints in all. To comprehend that number, we pull out the wooden cubes and begin placing them so they resemble the legs of a spider, four legs on both sides of the body. We start with three blocks in each leg. After counting the blocks, we realize that we have reached only 24. Four children work together to increase the number in each leg to six, until the blocks total the number of joints in a spider's legs.

Counting, adding, subtracting, grouping, cooperating, problem solving—none of this was in today's learning plan. Today's plan was to integrate math into the study of apples.

Another page of our book reveals that spiders have eight eyes, grouped in two rows of four. The pairs of eyes in our Mr. Potato Head bin work well in representing the configuration of our spider's eyes.

Matthew knows there are water spiders, so we search for a section to tell us more about them.

But our original question was about the hair on the tarantula's body. Finally, our search brings us to the answer: The hair is to throw at attackers and act as sensors to help it feel its way around its neighborhood.

Exploring, reading, talking, asking questions, and thinking—the plan was to integrate these skills later into our apple cooking activity.

Each child's world is our curriculum. We can ask open-ended questions and lead children into reading to seek answers. We can encourage them to represent their findings and thus communicate new insights. We can guide them into exploring possibilities, setting up experiments, and then reviewing results to display and share with classmates. These activities form the heart and core of our guiding discovery, creating life-long learners.

About the author

Genan T. Anderson has worked as an early childhood educator for more than 25 years, a mother, a community college instructor, and an elementary school teacher. She is currently head teacher at the Brigham Young University preschool laboratory and will begin doctoral studies in the fall. Her reflections are one way she "makes sense out of the world."