Skip to main content
Article
The aerodynamic effects on a cornering Ahmed body
Journal of Wind Engineering and Industrial Aerodynamics
  • James Keogh, University of New South Wales
  • Tracie Barber, University of New South Wales
  • Sammy Diasinos, University of New South Wales
  • Graham Doig, California Polytechnic State University, San Luis Obispo
Publication Date
7-1-2016
Abstract
As a vehicle travels through a corner, the flowfield observed from the vehicle׳s frame of reference becomes curved. This condition results in the relative flow angle and freestream velocity changing both across the width and along the length of the body. Wall-resolved Large Eddy Simulations were used to simulate a simple vehicle shape through three different radii corners. The variable flow angle and acceleration affected the pressure distribution along either side of the body and caused an increase in the size of the outboard C-pillar vortex, and an inboard decrease. Furthermore, an outboard extension of the separation bubble at the bluff trailing face resulted in a gentler downwash angle off the backlight surface, with the opposite occurring inboard. At a Reynolds number of 1.7×106, a 19.2% increase in aerodynamic drag occurred for a five car-length radius corner when compared to the straight-line condition. In addition, a yawing moment acted against the rotation of the body through the corner, and a side force acted towards the centre of the corner. An exponential trend related the curvature of a vehicle׳s path to the increase in aerodynamic drag, with a linearity exhibited for the increase in yawing moment and side force.
Disciplines
Number of Pages
13
Citation Information
James Keogh, Tracie Barber, Sammy Diasinos and Graham Doig. "The aerodynamic effects on a cornering Ahmed body" Journal of Wind Engineering and Industrial Aerodynamics Vol. 154 (2016) p. 34 - 46
Available at: http://works.bepress.com/gcdoig/31/