Skip to main content
Article
4-Amino-2-chlorophenol: Comparative In Vitro Nephrotoxicity and Mechanisms of Bioactivation
Pharmaceutical Science and Research
  • Gary O. Rankin, Marshall University
  • Adam Sweeney, Marshall University
  • Christopher Racine, Marshall University
  • Travis Ferguson
  • Deborah Preston
  • Dianne K. Anestis, Marshall University
Document Type
Article
Publication Date
4-19-2016
Abstract

Chlorinated anilines are nephrotoxicants both in vivo and in vitro. The mechanism of chloroaniline nephrotoxicity may occur via more than one mechanism, but aminochlorophenol metabolites appear to contribute to the adverse in vivo effects. The purpose of this study was to compare the nephrotoxic potential of 4-aminophenol (4-AP), 4-amino-2-chlorophenol (4-A2CP), 4-amino-3-chlorophenol (4-A3CP) and 4-amino-2,6-dichlorophenol (4-A2,6DCP) using isolated renal cortical cells (IRCC) from male Fischer 344 rats as the model and to explore renal bioactivation mechanisms for 4-A2CP. For these studies, IRCC (~4×106 cells/ml) were incubated with an aminophenol (0.5 or 1.0 mM) or vehicle for 60 min at 37° C with shaking. In some experiments, cells were pretreated with an antioxidant or cytochrome P450 (CYP), flavin monooxygenase (FMO), peroxidase or cyclooxygenase inhibitor prior to 4-A2CP (1.0 mM). Lactate dehydrogenase (LDH) release served as a measure of cytotoxicity. The order of decreasing nephrotoxic potential in IRCC was 4-A2,6-DCP > 4-A2CP > 4-AP > 4-A3CP. The cytotoxicity induced by 4-A2CP was reduced by pretreatment with the peroxidase inhibitor mercaptosuccinic acid, and some antioxidants (ascorbate, glutathione, N-acetyl-L-cysteine) but not by others (α-tocopherol, DPPD). In addition, pretreatment with the iron chelator deferoxamine, several CYP inhibitors (except for the general CYP inhibitor piperonyl butoxide), FMO inhibitors or indomethacin (a cyclooxygenase inhibitor) failed to attenuate 4-A2CP cytotoxicity. These results demonstrate that the number and ring position of chloro groups can influence the nephrotoxic potential of 4-aminochlorophenols. In addition, 4-A2CP may be bioactivated by cyclooxygenase and peroxidases, and free radicals appear to play a role in 4-A2CP cytotoxicity.

Comments

The version of record is available from the publisher at https://dx.doi.org/10.1016%2Fj.cbi.2014.10.001. Copyright © 2014 Elsevier. All rights reserved.

Citation Information
Rankin GO, Sweeney A, Racine C, Ferguson T, Preston D, Anestis DK. 4-Amino-2-chlorophenol: Comparative in vitro nephrotoxicity and mechanisms of bioactivation. Chemico-Biological Interactions. 2014;222:126-132.