Skip to main content
CD31+ T Cells Represent a Functionally Distinct Vascular T Cell Phenotype
Blood Cells, Molecules & Diseases
  • Erich J Kushner
  • Owen J MacEneaney
  • Richard G Morgan
  • Alexander M Van Engelenburg
  • Gary P. Van Guilder
  • Christopher A DeSouza
Document Type
Publication Date
In contrast to CD3(+)/CD31(-) cells, CD3(+)/CD31(+) cells aid in endothelial repair and revascularization. There are limited data regarding the functional differences between circulating CD3(+)/CD31(+) and CD3(+)/CD31(-) cells that may contribute to their divergent cardiovascular effects. The aim of the present study was to characterize functional differences between CD3(+)/CD31(+) and CD3(+)/CD31(-) cells. To address this aim, migratory capacity, proangiogenic cytokine release and apoptotic susceptibility of CD3(+)/CD31(+) and CD3(+)/CD31(-) cells were determined. Human CD3(+)/CD31(+) and CD3(+)/CD31(-)cells from peripheral blood were isolated using magnetic-activated cell sorting. CD3(+)/CD31(+) cells demonstrated significantly higher ( approximately 60%) migratory capacity to the chemokines SDF-1alpha (655+/-99 vs. 273+/-54 AU) and VEGF (618+/-99 vs. 259+/-57 AU) vs. CD3(+)/CD31(-) cells. Release of angiogenic cytokines G-CSF, interleukin-8 and matrix metallopeptidase-9 were all approximately 100% higher (P<0.05) in CD3(+)/CD31(+) than CD3(+)/CD31(-) cells. CD3(+)/CD31(+) cells exhibited significantly higher intracellular concentrations of active caspase-3 (2.61+/-0.60 vs. 0.34+/-0.09 ng/mL) and cytochrome-c (21.8+/-1.4 vs. 13.7+/-1.0 ng/mL). In summary, CD3(+)/CD31(+) cells have greater migratory and angiogenic cytokine release capacity, but are more susceptible to apoptosis compared with CD3(+)/CD31(-) cells. Enhanced migratory capacity and angiogenic cytokine release may contribute to the vasculogenic properties of this unique T cell subpopulation.
DOI of Published Version
Citation Information
Erich J Kushner, Owen J MacEneaney, Richard G Morgan, Alexander M Van Engelenburg, et al.. "CD31+ T Cells Represent a Functionally Distinct Vascular T Cell Phenotype" Blood Cells, Molecules & Diseases Vol. 44 Iss. 2 (2010) p. 74 - 78
Available at: