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We introduce an analytical model to rapidly determine the thermal conductivity reduction due to mass

disorder in nanomaterials. Although this simplified classical model depends only on the masses of the

different atoms, it adequately describes the changes in thermal transport as the concentrations of these

atoms vary. Its predictions compare satisfactorily with nonequilibrium molecular dynamics

simulations of the thermal conductivity of 14C–12C carbon nanotubes as well as with previous

simulations of other materials. We present it as a simple tool to quantitatively estimate the thermal

conductivity decrease that is induced by isotope substitution in various materials.

1. Introduction

There is a growing interest in fabricating materials for sustain-

able energy applications that have a high thermoelectric effi-

ciency at room temperature,1 e.g., to generate electricity from

waste heat. The thermoelectric properties of a material can be

improved by suitably tailoring its structure at the nanometre

scale. This strategy allows for a significant reduction in the

thermal conductivity of a nanostructured thermoelectric as

compared to bulk materials.2,3 When the characteristic dimen-

sion of these nanostructures approaches the phonon mean free

path, the resulting perturbations in the lattice vibrations

(phonons) that enable heat transport are larger than the corre-

sponding variations in the electrical conductivity. This under-

standing has led to the development of nanomaterials such as

nanowires, superlattices and solid thin films that have much

smaller thermal conductivities in comparison with their bulk

counterparts.4–8 Chemical modifications of nanomaterials can

also significantly alter their magnetic properties.9,10 While

perturbation of the phonon propagation is generally caused by

different scattering mechanisms,11 phonon scattering in those

materials mostly arises at the boundaries because of the large

surface-to-volume ratio induced by the large extent of outer

surface and interfaces.

Phonon scattering in silicon–germanium superlattice nano-

wires that have diameters of several tens of nanometres is

dominated by atomic disorder (alloy scattering) rather than the

surface scattering.12 Thermal conductivity reduction through

atomic disorder has been measured in various bulk materials

including alloys and isotope mixtures.13–20 Even a small mass

difference in these materials significantly changes their heat

transport properties. For example, a change in the 13C isotope

fraction from 0.07% to 1% in diamond can reduce the corre-

sponding thermal conductivity by approximately 30%.21 There-

fore, we particularly consider the effects of mass disorder in

nanostructured materials on the thermal conductivity as

a strategy to reduce it.

This insight has motivated several recent molecular dynamics

(MD) simulations and band structure calculations, which have

sought to understand how heat transfer reduction occurs in

nanomaterials. In accord with experimental measurements, their

predictions show that surface roughness and porosity play an

important role in controlling the thermal conductivity of silicon

nanowires.22–24 MD simulations predict that the introduction of

either silicon isotopes or germanium into the material lattice

induces a thermal conductivity decrease relative to a pure silicon

nanowire.25–28 Likewise, MD simulations of nanostructures with

isotope defects also predict a thermal conductivity reduction in

carbon based materials such as single walled carbon nanotubes

(SWCNTs),29,30 SWCNT superlattices,31 graphene sheets32 and

nanoribbons.33 Indeed, these show that the room temperature

thermal conductivity can be reduced by almost an order of

magnitude by simply doping the corresponding nanostructures

with isotopes.

A theoretical framework for the heat transfer reduction that

occurs due to mass disorder in lattices was defined more than fifty

years ago by Klemens34 and Callaway.35 They showed that

a point defect that is induced by a mass difference in a crystal

lattice causes phonon scattering. Moreover, if this mass-induced
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scattering dominates the whole phonon scattering, the lattice

thermal conductivity is driven by the masses and concentrations

of the individual isotopes that contribute to the disorder. More

recently, comprehensive theoretical tools have been employed to

analyze and to predict the thermal conductivity of nano-

structures, including those with mass disorder.36–40 Despite the

use of analytical methods and time-consuming computer simu-

lations, a theoretical prescription that offers access to the heat

transfer reduction on the basis of accessible input parameters is

still missing.

In this paper, we present a simple classical model based on

a mean-field approximation to evaluate the thermal conductivity

variation in systems for which phonon scattering is induced

through the presence of two different masses. The model requires

only the masses of the different isotopes and their molar frac-

tions, and does not contain adjustable parameters. It is able to

correctly describe molecular dynamics predictions of the thermal

conductivity reduction in solid nanomaterials of carbon upon

isotope substitution. Reasonably good agreement is also

observed between our model predictions and recently published

MD results for silicon crystals41 and silicon–germanium nano-

wires.26 Since the model readily predicts the thermal conductivity

changes due to isotope substitution in nanomaterials at room

temperature without resorting to complex calculations, its

capability is also of practical interest. It should be understood

that a competition with the sophisticated theories mentioned

above has not been the intention of our work.

We first present MD calculations of the classical density of

vibrational states (DVS) of single walled armchair (10,10) carbon

nanotubes containing different fractions of 12C and 14C isotopes

at room temperature. Equipped with these results, we next

introduce the classical model mentioned above. Finally, we

validate the model using nonequilibrium MD simulations of 14C

isotope enriched CNTs and investigate its predictive ability by

correlating our data with other MD results reported in the

literature.

2. Theoretical background and methodology

Equilibrium molecular dynamics simulations

MD simulations of 40 nm long (10,10) CNTs consisting of 6520

atoms were performed using the LAMMPS code.42 Periodic

boundary conditions (PBCs) were applied in all directions so that

the CNTs are essentially infinitely long in the z direction. The

PBC applied along the z axis eliminates the effects of phonon-

boundary scattering. The x and y dimensions of the simulation

cell were large enough to prevent the tubes from interacting with

their own periodic images in the lateral directions. Various

fractions of 12C atoms were randomly selected and replaced by
14C isotopes. The Adaptive Intermolecular Reactive Empirical

Bond Order (AIREBO) potential model was employed to

reproduce the bonded interactions as well as the nonbonded

interactions which are both of the attractive dispersion and of the

repulsive type. They are mapped by a Lennard-Jones poten-

tial.43,44 Each system was initialized at 300 K and simulated for

0.5 nanoseconds (ns) at 300 K and 1 atm (NPT ensemble). We

employ the Nos�e–Hoover thermostat and barostat, each with

a coupling time of 100 femtoseconds (fs). This ensured that the

CNT was free of internal stresses and relaxed to its appropriate

thermodynamic density. Next, the canonical (NVT) ensemble

was imposed and the system relaxed at constant temperature and

volume for 0.5 ns after which the equilibrated CNT structure was

obtained. All simulations used 1 fs time steps.

Equilibrium simulations in the canonical ensemble at 300 K

were used to calculate the classical DVS from the Fourier

transform of the ensemble averaged mass weighted velocity auto-

correlation function (VACF).45 The equilibrated CNT structure

was run for 1 ns with trajectories sampled every 100 ps. Each of

these trajectories was independently simulated for 8.5 ps and the

velocities were recorded every 1 fs. The time-translation invari-

ance of the VACF was used to obtain a correlation over 8.192 ps

by performing an average over 309 time origins. The average of

all VACFs was Fourier transformed to obtain the DVS spectra

with a 2.036 cm�1 resolution. In order to improve the signal-to-

noise ratio of the Fourier transform, the VACFs were multiplied

by an exponential function that had a characteristic decay time of

5 ps. Such a procedure is widely used in the treatment of the free

induction decays in NMR spectroscopy.46 This filtering function

broadens the bands of the spectrum while appreciably decreasing

the noise. Since the characteristic time was chosen to be close to

the maximum time correlation of the VACFs, only a very slight

broadening of the bands was observed.

Density of vibrational states analysis

The DVS spectra of the pure 12C and 14C nanotubes, as well as of

a CNT with 40% of 14C, are presented in Fig. 1a. The spectra of

the systems that contain the 14C isotope are shifted along the

y-axis for clarity. The general shape of the spectra is in line with

literature data.47,48 The structure with two broad profiles below

700 cm�1 arises mainly from the radial vibration modes of

the CNT.49,50 The maximum around 1762 cm�1 in the pure

Fig. 1 (a) Density of vibrational states (DVS) of CNTs containing 0%

(black), 40% (blue) and 100% (red) of the 14C isotope, respectively. The

spectra at 40% and 100% are displaced in the y direction in order to allow

a convenient comparison. (b) DVS of the CNTs containing 0% (i), 10%

(ii), 20% (iii), 40% (iv), 80% (v), and 100% (vi) of the 14C isotope. The plot

is restricted to the region between 1500 and 1900 cm�1. The intensity in

both plots is reported in arbitrary units.
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12C nanotube corresponds to the fastest vibrational modes in the

system that can be associated with more or less localized

stretching modes of the carbon atoms around their equilibrium

position. The localized nature of these high energy modes can be

deduced from calculations in the momentum space.50 This

boundary frequency can also be interpreted as the Einstein

frequency of the CNT lattice, which corresponds to the

frequency of an isolated atom vibrating in the potential energy

surface generated by its local environment.

Fig. 1b shows that the high energy modes shift towards lower

wave numbers when the 14C content increases. The high energy

maximum of the DVS for a pure 14C nanotube occurs at 1632

cm�1. The height of this peak decreases until the content of 14C

is around 50%, beyond which it increases again. This reduction

correlates with a broadening of the high-energy DVS; it splits

between 1762 and 1632 cm�1. Thus, the results show that the

local vibrational characteristics of a system with an intermediate

content of isotopes are influenced by the mass disorder intro-

duced in the network of atoms. While we have not presented

the low frequency behavior of the DVS spectra in Fig. 1b for

the sake of visual clarity, we have observed the wave number

shift to be smaller in the low frequency region than at higher

frequencies.

The high energy maximum in Fig. 1a and b for the two pure

isotope CNTs corresponds to the more or less local modes

described above. This can be illustrated through a simple model

that predicts the change of the corresponding wave number when

a system contains isotopes of different masses. In order to build

this model, we compute the wave number of an isolated vibrating

atom whose mass mx is the average atomic mass in the system

defined by

mx ¼ xmb + (1 � x)ma (1)

where ma and mb denote the masses of the two isotopes a and b,

and x the molar fraction of isotope b that has substituted isotope

a in the structure. In the harmonic approximation, the wave

number depends on the square root of the product of the force

constant and the inverse of the mass of the considered atom.

Since the system consists of isotopes with a similar electronic

structure that can be described adequately in the Born–Oppen-

heimer approximation, we neglect the change in the local

curvature of the potential energy surface (which yields the force

constant) induced by the mass difference. The ratio between the

wave number y0 at x ¼ 0 and yx for a specified fraction x of

isotopes b is,

y0

yx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
mb

ma

þ ð1� xÞ
r

(2)

Fig. 2 presents the DVS spectra for systems with different

contents of the 14C isotope. The wave number axis of all the

spectra is rescaled by the factor in eqn (2). The spectra are also

shifted along the y-axis for visual ease. It can be seen that the

major changes in the DVS spectra occur in the high energy region

beyond 1600 cm�1. Nevertheless, the high energy spectra in the

two pure systems coincide when the rescaled wave numbers are

used. Moreover, all the rescaled spectra are generally similar in

the region below 1600 cm�1 (with small differences in the DVS

structure that are beyond the scope of this work).

The results show that approximately all the wave numbers in

the system are influenced in a similar manner when 12C is

substituted by 14C. This is consistent with the theoretical finding

that the mass disorder dominates the changes in vibrational

properties for classical systems at high temperature.51 We can

conclude from the DVS spectra that the vibrational states of the

isotope substituted CNTs can be roughly approximated as a set

of weakly coupled oscillators with wave numbers that are

determined by the average atomic mass in the system. Although

the employed rough estimate might imply that there is a mono-

tonic variation in the thermal conductivity with respect to the

isotope fraction, this variation is not monotonic, as will be shown

later. The harmonic approximation employed in connection with

eqn (2) should not be taken literally. It has only been used to

estimate the mass dependence of the frequency shifts in the DVS

spectra.

While energy transfer occurs through the vibrational modes of

the system, the participation of the different modes can differ

significantly.23,52 Only the modes that are delocalized to a large

extent can be expected to play an important role in heat

conduction in crystal lattices. Even a small mass disorder is

sufficient to prevent the formation of these perfectly delocalized

modes that are most efficient for thermal transport. Thus, heat

conduction is reduced by the presence of scattering sites created

through mass disorder, e.g., due to isotope substitution. We

show in Fig. 1 and 2 that fingerprints of these changes also

appear in the high energy region of the vibrational modes. While

these findings might support interpretations highlighting the

importance of the localized modes for the heat transport in

nanomaterials, we believe that this picture neglects the changes in

the phonon modes in the low energy range. In a recent MD study

of CNTs adopting the Boltzmann transport equation, it has been

shown that delocalized low energy modes (<700 cm�1) account

for most of the thermal conductivity,23 which also agrees with

our previous findings.47

A classical model based on mean-field approximation

Both experimental measurements of thermal conductivity and

the corresponding results of MD simulations obtained from the

Fig. 2 Density of vibrational states (DVS) of CNTs containing 0%, 10%,

20%, 40%, 80% or 100% of the 14C isotope. The wave numbers are

rescaled according to eqn (2). The intensity in the plot is reported in

arbitrary units.
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literature follow the typical features of Klemens’ theory: (1) there

is a substantial reduction in heat transfer upon isotope substi-

tution even for materials with two isotopes that have similar

masses, (2) the largest variation in the heat transfer reduction k

occurs for small isotope contents, (3) the maximum thermal

resistance in binary systems occurs for an approximately equi-

molar mixture, and (4) a pure material made of the lightest

isotope should have the highest thermal conductivity l. Only the

difference in mass and the mass defect molar fraction plays

a central role in Klemens’ theory. It can also be deduced from

these observations that short-range modifications in the mass

defect distribution are irrelevant to the reduction of heat transfer.

This is illustrated by the frequency scaling of the DVS spectra

described in Fig. 2. We conclude that a mean-field approxima-

tion for the mass distribution is applicable to map the isotope

effect on the heat transfer reduction in isotope enriched CNTs.

In the mean-field approach, the heat transfer rate _Qx through

an isotope enriched CNT is assumed to be proportional to the

frequency ux of a single oscillator that is defined by two different

bonded point masses MA(x) and MB(x). Thus, the heat transfer

reduction is given by

kðxÞ ¼
_Qx

_Q0

¼ ux

u0

(3)

MA and MB must depend linearly on the isotope fraction, such

thatMA¼ xMa andMB¼ (1� x)Mb to account for the variation

in molar fraction with Ma and Mb denoting effective masses. In

the harmonic approximation, the frequency of such an oscillator

is inversely proportional to the square root of its reduced mass m,

where,

1

mx

¼ 1

xMb

þ 1

ð1� xÞMa

(4)

The cases when the effective oscillator describes the homoge-

neous systems must be considered separately. An additional

dimensionless parameter 3 in eqn (5) ensures that the inverse

reduced mass does not diverge in the limiting cases of x¼ 0 and x

¼ 1. Hence,

1

mx

¼ 1

ðxþ 3ÞMb

þ 1

ð1� xþ 3ÞMa

(5)

In order to establish the association between the frequency of an

oscillator containing two atoms and the CNT thermal conduc-

tivity l, we assume that it is the alteration in the heat transfer

through the oscillator that reduces the thermal conductivity.

Hence, the value for k(x) for a binary mixture in comparison

with a pure 12C nanotube is obtained from the change in the

average frequency of the effective oscillator, which follows from

eqn (5) as

kðxÞ ¼ lðxÞ
lð0Þ ¼

_Qx

_Q0

¼ ux

u0

¼
ffiffiffiffiffi
m0

mx

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ 3Þ½ð1� xþ 3ÞMa þ ðxþ 3ÞMb�
ðxþ 3Þð1� xþ 3Þ½ð1þ 3ÞMa þ 3Mb�

s
(6)

Eqn (6) is reminiscent of the factor in Klemens’ theory34,51 that

quantifies the effect of isotope mass disorder on thermal

conductivity. We will show that this equation is able to reproduce

the features of that theory as enumerated above.

The three parameters Ma, Mb and 3 in eqn (6) are numerically

determined from considerations made on the systems of isotopes.

Three values of k can be identified on the basis of the following

limiting cases. (1) Since k is expected to predict the heat transfer

reduction in comparison to a pure system containing the lightest

isotope, k(0) ¼ 1 defines one limiting condition. (2) The second

limiting case follows from our analysis of the DVS spectra: k(1)¼
(mb/ma)

�1/2. (3) The third value of k is determined from the

second situation where the local isotope distribution is approx-

imately homogeneous. This is achieved when x is close to 0.5 for

a mixture where isotopes are regularly distributed. In order to

derive the reduction in the heat transfer rate in the vicinity of x¼
0.5, we use the following mean-field construction. We assume

that a pair of identical isotopes contributes constructively to

energy transfer. On the contrary, two different isotopes are

assumed to have a destructive effect. The contribution of a pair

of bonded atoms to the heat transfer rate is inversely propor-

tional to the square root of the reduced mass of the pair, which

corresponds to mx/2 when x is approximately 0.5. Finally, the

average energy transfer rate sx at a specified isotope fraction x is

obtained by adding the individual participations of each kind of

possible pairs of bonded atoms. Each contribution is weighted by

the probability that the given pair is found in the system so that,

sx

s0

¼
_Qx

_Q0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðmb=maÞ þ ð1� xÞp h

x2 þ ð1� xÞ2�xð1� xÞ
i
(7)

Eqn (7) considers that the probabilities for an oscillator to consist

of two a-type isotopes and two b-type isotopes are approximately

x2 and (1 � x)2, respectively, whereas the probability that an

oscillator is made of two different isotopes is approximately

x(1 � x). This relation can be employed to derive the expression

for the heat transfer reduction k(x) ¼ sx/s0. The constraints

k(0)¼ 1, k(1)¼ s1/s0 and k(0.5)¼ s0.5/s0 are used to numerically

determine the complete set of parameters used in eqn (6).

Nonequilibrium molecular dynamics simulations

Reverse nonequilibrium molecular dynamics53,54 (RNEMD)

simulations were performed to probe the validity of the analytical

model by computing the thermal conductivity of different CNTs.

In RNEMD simulations, a steady heat flux is realized through the

simulation cell by periodically imposing a kinetic energy exchange

within specific regions of the system while the total energy and

momentum are conserved. This imposed heat flux leads to

a steady-state temperature gradient. Both the imposed heat flux

and the measured temperature gradient are used to obtain the

thermal conductivity fromFourier’s lawprovided that the thermal

gradient is linear, i.e. linear response holds. The RNEMD simu-

lations were performed over the 5 ns that followed the equilibra-

tion described previously. The RNEMD velocity exchange period

parameter covered 300 time steps. Temperatures and energy flux

over the simulation cellwere recorded every 1 ps, and a steady state

was achieved by 3.5 ns. The last 1 ns of the simulation was used to

determine the average thermal conductivity.

3. Results and discussion

The simulated values of l for different fractions of 14C isotope are

reported in Table 1. The variation in the thermal conductivity

This journal is ª The Royal Society of Chemistry 2011 Nanoscale, 2011, 3, 3714–3720 | 3717
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reduction factor k(x) ¼ l(x)/l(0) upon isotope substitution is

presented in Fig. 3. The observed nonmonotonic behavior is in

agreement with Klemens’ theory and has also been reported in

other MD simulations.27,29 The scatter in the MD results arises

because a single calculation was used to obtain l for each system.

Averaging over a set of calculations with a different spatial

isotope distribution should suppress such fluctuations.30 Never-

theless, the simulation results are in very good agreement with

the predictions from eqn (6) which are also reported in Fig. 3.

The values of the model’s parameters Ma,Mb and 3 are reported

in the caption of Fig. 3. The correlation between the model and

the MD results clearly shows that changes in the short range

order are irrelevant for the reduction in the thermal conductivity.

It is rather the perturbation of the delocalized modes (i.e. long-

range effect) that is responsible for the thermal conductivity

changes.

The addition of 14C reduces l until the CNT contains

approximately a 50% molar fraction of this isotope. Beyond this

fraction, the conductivity increases again with increasing

substitution. For equimolar mixtures, the hindrance of delo-

calized mode formation corresponds to a maximum. We

furthermore compare the predictions of eqn (6) with MD simu-

lations of the thermal conductivity of other carbon materials in

Fig. 3. The model slightly overestimates l for isotope substituted

graphene nanoribbons,33 but the overall agreement is still good.

Our model is also able to predict k(x) for 13C isotope substitution

in graphene sheets.32 Thus, the thermal conductivity behavior of

isotope-substituted graphene is also well reproduced by eqn (6).

Fig. 4a shows that eqn (6) is also able to predict the MD simu-

lation results for the thermal conductivity of binary mixtures of
28Si, 29Si and 30Si isotopes in silicon crystals.41 This agreement

seems to be an outcome of the very small differences between

the masses of the isotopes. The values of Ma, Mb and 3 corre-

sponding to silicon isotope systems are reported in the caption of

Fig. 4a.

However, the thermal conductivity reduction in a (5,5)

CNT29,30 is reproduced poorly by our model (not shown here).

While the model predicts a maximum reduction of 75%, the

simulations report a maximum reduction of 40% at most. We

implicitly assume in the parameterization of our model that the

scattering induced by the mass defects can be described through

the stretching mode between two bonded atoms. However, for

structures with large curvature like (5,5) CNTs it may be neces-

sary to explicitly consider the coupling to bending or breathing

modes to obtain a more precise description of the thermal

transport.50 The absence of such effects in a two-center model

could explain the disagreement between its predictions and the

mentioned results for (5,5) CNTs. Implications of coupling

Table 1 Variation in the thermal conductivity of a (10,10) carbon
nanotube with respect to the fraction of 14C isotope at 300 K obtained
from nonequilibrium molecular dynamics simulations. The error values
reported here correspond to the standard errors computed from the
different simulations.

Percentage
of 14C isotopes

Thermal conductivity
l/Wm�1 K�1

0 173.16 � 23.33
2.71 123.81 � 11.57
5.24 85.60 � 3.31
10.21 82.79 � 2.92
12.63 79.55 � 5.32
15.04 69.78 � 3.26
20.53 63.65 � 2.68
30.31 45.25 � 1.67
40.82 38.51 � 1.03
49.63 33.15 � 0.73
60.06 41.53 � 1.11
70.09 65.69 � 3.04
79.65 74.32 � 4.62
89.54 85.20 � 5.21
100 114.83 � 7.71

Fig. 3 Comparison between our RNEMD calculations (filled circles),

the heat transfer reduction model (dashed line), and previous simulations

for graphene nanoribbons33 (open squares) and graphene sheets32 (open

diamonds). The values of the model’s parameters are Ma ¼ 1.393, Mb ¼
1.188 and 3 ¼ 0.01630. x denotes the fraction of the lightest isotope.

Fig. 4 (a) Comparison between the model and the MD simulations of

silicon crystals41 with 28Si and 29Si with 29Si and 30Si substitution,

respectively. x denotes the fraction of the lightest isotope, i.e. 28Si or 29Si.

The ratio k(x)/k(0.5) is presented instead of k(x) because data for the pure

components are unavailable. The dashed red line corresponds to our

model of eqn (6) with Ma ¼ 1.406, Mb ¼ 1.356 and 3 ¼ 0.01639. (b)

Comparison between MD simulations in silicon–germanium nanowires26

and the prediction of eqn (6). The dashed red line is obtained from

constraints on s in eqn (7) which yields Ma ¼ 1.388, Mb ¼ 0.5220 and

3 ¼ 0.01307, while the dashed black line is obtained from constraints on

the first derivative of s; they lead to Ma ¼ 1.072, Mb ¼ 0.9256 and

3 ¼ 0.009558.
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effects of bonds over small CNT diameters have been com-

mented in a recent study by some of the present authors.47

A comparison of the model with experimental measurements is

difficult because of the lack of data. Measurements for 12C

enriched diamond are restricted to a very small amount of 13C

isotopes.21 Such substitutions produce a reduction of approxi-

mately 30–36% in l while our analytical model predicts

a decrease of about 19% as the 13C isotope fraction is varied from

0.07% to 1%. When the fraction of 13C is varied from 0.5% to 1%

in the experiments, there is a 6–12% reduction in the conductivity

while our model predicts a decrease of 10%. The experimental

trend is in qualitative agreement with the results obtained from

simulations for carbon and silicon materials.

We also evaluate the applicability of our model for systems in

which the difference between the masses exceeds that between

two typical isotopes of the same element. Here, we choose

different elements from the same group in the periodic table.

Note that in contrast to isotope mixtures, element mixtures lead

to increasing deviations from the potential energy surface of one

component when the mole fraction of the other component is

enhanced. However, we show that a slight modification of the

parameterization of the model in eqn (6) is sufficient to keep the

model’s ability to predict the thermal conductivity reduction in

those binary mixtures. Fig. 4b presents a comparison between

our model predictions and earlier simulations of silicon–germa-

nium nanowires.26The dashed red line in Fig. 4b is obtained from

eqn (6) by constraining the values of k(0), k(1) and k(0.5) as

described above. Although the results for a low germanium

content are good, this procedure yields a result that contradicts

the requirement of maximum thermal conductivity reduction

(i.e. the minimum of k) around x ¼ 0.5, as can be seen from the

distorted shape of the red curve in Fig. 4b. It is therefore more

consistent to constrain the minimization of k through its first

derivative with respect to x. However, it is not possible to use the

value of this derivative at x ¼ 0.5 since it yields a symmetric

variation in k with respect to x ¼ 0.5. Such mirror symmetry

violates the constraint that the thermal conductivity of the

lightest material should be larger than that of the heaviest. We

therefore locate the minimum of k at xmin for which the ratio

sxmin/s0 obtained from eqn (7) is minimized. The new set of

constraints is thus k(0) ¼ 1, k(xmin) ¼ sxmin/s0 and dk(xmin)/dx ¼
0. The model’s parameters to which this procedure yields are

reported in the caption of Fig. 4b. k(1) henceforth becomes an

output of the model. The resulting variation of k(x), shown as the

dashed black line in Fig. 4b, improves the agreement with the

simulations. The variation of k(x) in Fig. 3 (carbon materials)

and 4a (silicon crystals) is not modified by the new set of

constraints. This is because the previously observed distorted

shape arises due to the large mass difference between silicon and

germanium, while isotope systems are characterized by very

similar masses.

Our model is also in qualitative agreement with recent simu-

lations of silicon–germanium core–shell nanowires.28 This study

found that germanium coatings reduce the thermal conductivity

of silicon nanowires by 70–76%, which is similar to the maximum

reduction predicted by our model in Fig. 4b. The molar fractions

of germanium in that study are in line with those corresponding

to the smallest values of k in Fig. 4b. Furthermore, for a specified

nanowire length, the thermal conductivity reduction for the

Si/Ge composite in comparison with its uncoated silicon coun-

terpart increases when the fraction of germanium increases. This

trend is also predicted by our analytical model when the fraction

of germanium is smaller than 50%. Finally, the reduction in

thermal conductivity of the composite is somewhat insensitive to

the nanowire length. This can also be explained with our model

since increasing the nanowire length does not modify the ratio

between silicon and germanium molar fractions. Therefore, the

fraction of pairs of atoms which contribute either constructively

or destructively to heat transfer remains the same.

Admittedly, there are limitations to the above approach. The

model describes disordered structures without accounting for the

long-range order in the arrangement of the mass defects.

Nevertheless, the qualitative agreement of the model with MD

simulations of silicon–germanium nanowires suggests that it

might also be applicable for ordered structures. The implication

is that the mass difference between atoms would then represent

the major contribution to heat transfer perturbations regardless

of the precise arrangement of atoms. We anticipate future MD

simulations that are accompanied by calculations of phonon

dispersion and electronic properties in the momentum space that

will more fully characterize the degree of ordering that the model

is able to describe.

4. Conclusion

We have derived a simple model that predicts the reduction in

heat conduction due to isotope substitution and mass disorder in

binary solid materials. The model which is purely classical and

based on effective harmonic oscillator properties depends only

on the masses of the isotopes. Our objective is twofold: (1) on the

one hand, we aim to propose a tool that readily provides

acceptable results rather than competing with more detailed

theories, and (2) on the other hand, we show that a mean-field

approximation is applicable to the description of heat transfer in

solid nanomaterials. While the model should be used with

caution at low temperatures when quantum effects are likely to

play a role, it is possible to decouple the temperature effect from

the mass disorder effect.51 In this case, the effect of temperature

can be subsequently included as a multiplying factor.
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