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ABSTRACT

Although different approaches to decision-making in self-
adaptive systems have shown their effectiveness in the past
by factoring in predictions about the system and its environ-
ment (e.g., resource availability), no proposal considers the
latency associated with the execution of tactics upon the tar-
get system. However, different adaptation tactics can take
different amounts of time until their effects can be observed.
In reactive adaptation, ignoring adaptation tactic latency
can lead to suboptimal adaptation decisions (e.g., activat-
ing a server that takes more time to boot than the transient
spike in traffic that triggered its activation). In proactive
adaptation, taking adaptation latency into account is nec-
essary to get the system into the desired state to deal with
an upcoming situation. In this paper, we introduce a for-
mal analysis technique based on model checking of stochas-
tic multiplayer games (SMGs) that enables us to quantify
the potential benefits of employing different types of algo-
rithms for self-adaptation. In particular, we apply this tech-
nique to show the potential benefit of considering adapta-
tion tactic latency in proactive adaptation algorithms. Our
results show that factoring in tactic latency in decision mak-
ing improves the outcome of adaptation. We also present an
algorithm to do proactive adaptation that considers tactic
latency, and show that it achieves higher utility than an al-
gorithm that under the assumption of no latency is optimal.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General; D.2.4 [Software-
/Program Verification]: Formal methods

General Terms

Verification, Algorithms
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1. INTRODUCTION
When planning how to adapt, self-adaptive approaches

typically focus on the qualities of the resulting system, such
as performance, operating cost, and reliability [15, 29], or
safety and liveness properties of the system [4, 16]. How-
ever, properties of the adaptation itself are largely ignored.
One such property is the time it takes for an adaptation to
cause its intended effect. Different adaptation tactics take
different amounts of time until their effects can be observed.
For example, consider two tactics to deal with an increase in
the load of a system: reducing the fidelity of the results (e.g.,
less resolution, fewer elements, etc.), and adding a computer
to share the load. Adapting the system to produce results
with less fidelity may be achieved quickly if it can be done
by changing a simple setting in a component, whereas pow-
ering up an additional computer to share the load may take
some time. We refer to the time it takes since a tactic is
started until its effect is observed as tactic latency. Current
approaches to decide how to self-adapt do not take the la-
tency of adaptation tactics into account when deciding what
tactic to enact. For reactive adaptation, the consequence of
this limitation is that the system may decide to adapt in a
way that takes longer than other alternatives to achieve a
marginally better result. For proactive adaptation, consid-
ering tactic latency is necessary so that the adaptation can
be started with the sufficient lead time to be ready in time.

In this paper, we explore the use of tactic latency infor-
mation in the case of proactive self-adaptation. Specifically,
the contribution of this paper is twofold:

1. A novel analysis technique based on model checking of
stochastic multiplayer games (SMGs) that enables us to
quantify the potential benefits of employing different types
of algorithms for self-adaptation. Specifically, we show
how the technique enables the comparison of alternatives
that consider tactic latency information for proactive adap-
tation with those that are not latency-aware.

2. A specific latency-aware algorithm for proactive adapta-
tion. The algorithm extends the one that Poladian et
al. [26] used to compute the optimal sequence of adapta-
tion decisions for anticipatory dynamic configuration.

Our formal verification results show that factoring in tac-
tic latency in decision making improves the outcome of adap-
tation both in worst and best-case scenarios. This is consis-
tent with the results obtained for our latency-aware proac-
tive adaptation algorithm, showing that it is able to obtain
higher utility than Poladian et al.’s algorithm, which is op-
timal under the assumption of no tactic latency.



The remainder of this paper is structured as follows: Sec-
tion 2 summarizes Znn.com, the example used to illustrate
our approach. Section 3 introduces some background and
related work. Section 4 describes our technique for an-
alyzing adaptation based on model checking of stochastic
games. Next, section 5 presents our algorithm for latency-
aware proactive adaptation. Finally, section 6 concludes the
paper and indicates future research directions.

2. EXAMPLE
Znn.com [9] is a case study portraying a representative

scenario for the application of self-adaptation in software
systems which has been extensively used to assess different
research advances in self-adaptive systems. Znn.com em-
bodies the typical infrastructure for a news website, and
has a three-tier architecture consisting of a set of servers
that provide contents from backend databases to clients via
front-end presentation logic (Figure 1). The system uses a
load balancer to balance requests across a pool of replicated
servers, the size of which can be adjusted according to ser-
vice demand. A set of clients makes stateless requests, and
the servers deliver the requested contents.
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Figure 1: Znn.com system architecture

The main objective for Znn.com is to provide content to
customers within a reasonable response time, while keeping
the cost of the server pool within a certain operating bud-
get. It is considered that from time to time, due to highly
popular events, Znn.com experiences spikes in requests that
it cannot serve adequately, even at maximum pool size. To
prevent losing customers, the system can maintain function-
ality at a reduced level of fidelity by setting servers to re-
turn only textual content during such peak times, instead of
not providing service to some of its customers. Concretely,
there are two main quality objectives for the self-adaptation
of the system: (i) performance, which depends on request
response time, server load, and network bandwidth, and (ii)
cost, which is associated with the number of active servers.

In Znn.com, when response time becomes too high, the
system is able to increment its server pool size if it is within
budget to improve performance; or switch servers to textual
mode if the cost is near to budget limit.1

3. BACKGROUND AND RELATED WORK
This section first introduces the adaptation model that

we assume in this paper. Next, we overview probabilistic
model checking of SMGs, the technique upon which we build
to analyze different kinds of adaptation in our approach.
Finally, we present related work in proactive self-adaptation.

1In this paper we consider a simple version of Znn which
adapts only by adjusting server pool size.

3.1 Adaptation Model
Although there are many approaches that rely on a closed-

loop control approach to self-adaptation, including those
that exploit architectural models for reasoning about the
target system under management [15, 20, 25], in this paper
we use some of the high-level concepts in Rainbow [15] as
a reference framework to illustrate our approach. Rainbow
is an architecture-based platform for self-adaptation, which
has among its distinct features an explicit architecture model
of the target system, a collection of adaptation tactics, and
utility preferences to guide adaptation.
We assume a model of adaptation that represents adap-

tation knowledge using the following high-level concepts:2

• Tactic: is a primitive action that corresponds to a single
step of adaptation, and has an associated: (i) cost/bene-
fit impact on the different quality dimensions, and (ii) la-
tency, which corresponds to the time it takes since a tac-
tic is started until its effect is observed.3 For instance,
in Znn.com we can specify pairs of tactics with opposing
effects for enlisting/discharging servers.

• Utility Profile: To enable the selection of tactics at run-
time, we assume that adaptation is driven by utility func-
tions and preferences, which are sensitive to the context
of use and able to consider trade-offs among multiple po-
tentially conflicting objectives. The different qualities of
concern are characterized as utility functions that map
them to architectural properties. In this case, we assume
that utility functions are defined by an explicit set of value
pairs (with intermediate points linearly interpolated).
Table 1 summarizes the utility functions for Znn. Func-
tion UR maps low response times (up to 100ms) with
maximum utility, whereas values above 2000ms are highly
penalized (utility below 0.25), and response times above
4000ms provide no utility. Function UC maps a increas-
ing cost (derived from the number of active servers) to
lower utility values. Utility preferences capture business
preferences over the quality dimensions, assigning a spe-
cific weight (wUR , wUC) to each one of them. In Znn, we
consider that preference is given to performance over cost.

By evaluating how different tactic execution sequences
might affect the different qualities of concern using a util-
ity profile, a proactive adaptation algorithm can build a
strategy with the objective of maximizing accrued utility
throughout the execution of the system.

Table 1: Utility functions and preferences for Znn
UR(wUR

= 0.6) UC(wUC
= 0.4)

0 : 1.00 500 : 0.90 2000 : 0.25 0 : 1.00 3 : 0.30
100 : 1.00 1000 : 0.75 4000 : 0.00 1 : 1.00 4 : 0.00
200 : 0.99 1500 : 0.50 2 : 0.90

3.2 Model Checking Stochastic Games
Automatic verification techniques for probabilistic systems

have been successfully applied in a variety of application do-
mains that range from power management or wireless com-
munication protocols, to biological systems. In particular,
techniques such as probabilistic model checking provide a
means to model and analyze systems that exhibit stochastic

2We use a simplified version of Stitch [11] to illustrate the
main ideas in this paper.
3Stitch incorporates a different notion of timing delay to
monitor the outcome of tactic executions in reactive adap-
tation strategies, which is not discussed in this paper.



behavior, effectively enabling reasoning quantitatively about
probability and reward-based properties (e.g., about the sys-
tem’s use of resources, or time).

Competitive behavior may also appear in (stochastic) sys-
tems when some component cannot be controlled, and could
behave according to different or even conflicting goals with
respect to other components in the system. In such situ-
ations, a natural fit is modeling a system as a game be-
tween different players, adopting a game-theoretic perspec-
tive. Automatic verification techniques have been success-
fully used in this context, for instance for the analysis of
security [21] or communication protocols [19].

Our approach to analyzing adaptation builds upon a re-
cent technique for modeling and analyzing SMGs [6]. In this
approach, systems are modeled as turn-based SMGs, mean-
ing that in each state of the model, only one player can
choose between several actions, the outcome of which can
be probabilistic. Players can either cooperate to achieve the
same goal, or compete to achieve their own goals.

The approach includes a logic called rPATL for express-
ing quantitative properties of stochastic multiplayer games,
which extends the probabilistic logic PATL [8]. PATL is
itself an extension of ATL [1], a logic extensively used in
multiplayer games and multiagent systems to reason about
the ability of a set of players to collectively achieve a par-
ticular goal. Properties written in rPATL can state that a
coalition of players has a strategy which can ensure that ei-
ther the probability of an event’s occurrence or an expected
reward measure meets some threshold.

rPATL is a CTL-style branching-time temporal logic that
incorporates the coalition operator 〈〈C〉〉 of ATL [1], combin-
ing it with the probabilistic operator P./q and path formulae
from PCTL [3]. Moreover, rPATL includes a generalization
of the reward operator Rr

./x from [13] to reason about goals
related to rewards. An example of typical usage combining
coalition and reward operators is 〈〈{1, 2}〉〉Rr

≥5[F
cφ], mean-

ing that “players 1 and 2 have a strategy to ensure that the
reward r accumulated along paths leading to states satisfy-
ing state formula φ is at least 5, regardless of the strategies
of other players.” Moreover, extended versions of the rPATL
reward operator 〈〈C〉〉Rr

max=?[F
? φ] and 〈〈C〉〉Rr

min=?[F
? φ],

enable the quantification of the maximum and minimum ac-
cumulated reward r along paths that lead to states satisfying
φ that can be guaranteed by players in coalition C, indepen-
dently of the strategies followed by the rest of players.

Reasoning about strategies is a fundamental aspect of
model checking SMGs, which enables checking for the ex-
istence of a strategy that is able to optimize an objective
expressed as a property including an extended version of
the rPATL reward operator. The checking of such proper-
ties also supports strategy synthesis, enabling us to obtain
the corresponding optimal strategy. An SMG strategy re-
solves the choices in each state, selecting actions for a player
based on the current state and a set of memory elements.4

3.3 Related Work
Poladian et al. demonstrated that when there is an adap-

tation cost or penalty, proactive adaptation outperforms re-
active adaptation [26]. Intuitively, if there is no cost asso-
ciated with adaptation, a reactive approach could adapt at
the time a condition requiring adaptation is detected with-
out any negative consequence. In their work, Poladian et

4See [6] for more details on SMG strategy synthesis.

al. presented two algorithms for proactive adaptation that
considered the penalty of adaptation when deciding how to
adapt. One of the algorithms assumed perfect predictions of
the environment, while the other handled uncertainty. The
latter was used to improve self-adaptation in Rainbow [10],
where Cheng et al. considered tactic latency only to skip the
adaptation if the condition that triggered it was predicted
to go away by itself before the adaptation tactic completed.
However, the approach did not consider all the effects that
arise due to tactic latency (see Section 5).
Proactive adaptation has received considerable attention

in the area of service-based systems [5, 18, 23, 28] because
of their reliance on third-party services whose quality of ser-
vice (QoS) can change over time. In that setting, when a
service failure or a QoS degradation is detected, a penalty
has already been incurred, for example, due to service-level
agreement (SLA) violations. Thus, proactive adaptation is
needed to avoid such problems. Hielscher et al. proposed
a framework for proactive self-adaptation that uses online
testing to detect problems before they happen in real trans-
actions, and to trigger adaptation when tests fail [18]. Wang
and Pazat use online prediction of QoS degradations to trig-
ger preventive adaptations before SLAs are violated [28].
These approaches ignore the adaptation latency.
Musliner considers adaptation time by imposing a limit on

the time to synthesize a controller for real-time autonomous
systems [24]. However, in that work there are not distinct
planning and execution phases, and thus there is no con-
sideration of the latency of the different actions the system
could take to adapt. In the area of dynamic capacity man-
agement for data centers, the work of Gandhi et al. con-
siders the setup time of servers, and is able to deal with
unpredictable changes in load by being conservative about
removing servers when the load goes down [14]. Their work
is specifically tailored to adding and removing servers to
a dynamic pool, a setting that resembles the running ex-
ample we use in this paper. However, their work assumes
the environment is unpredictable, and, consequently, does
not consider the possibility of being able to predict a re-
duction or transient spikes in load. Our approach, on the
other hand, can exploit predictions of such events and either
adapt as soon as possible when removing servers, or avoid
adaptations completely.

4. ANALYZING ADAPTATION
This section describes our approach to analyze self-adap-

tation, based on model checking of SMGs. In a nutshell,
the underlying idea behind the approach is modeling both
the self-adaptive system and its environment as two players
of a SMG, in which the system is trying to maximize an
accumulated reward (in the context of this paper, accrued
utility while the system is running). Although in general,
the environment does not have any predefined goal, it is
useful to consider it either as an adversary of the system, or
as a cooperative player to enable worst and best-case sce-
nario analysis, respectively, of different classes of adaptation
algorithms (e.g., latency-aware vs. non-latency-aware).

By expressing properties that enable us to quantify the
maximum and minimum rewards that a player can achieve,
independently of the strategy followed by the rest of players,
we can analyze the performance of a particular type of adap-
tation algorithm, giving an approximation of the reward that
an optimal decision maker would be able to guarantee both



in worst and best-case scenarios (by synthesizing strategies
that optimize different rewards). These properties follow
the general pattern 〈〈P〉〉RU

./[F
cω], where P is a set of players

that can include the system and/or the environment, U is a
reward that encodes the instantaneous utility of the system,
./ ∈ {min =?,max =?} identifies whether we are considering
the minimum or the maximum utility reward, respectively,
and ω is a state formula that indicates the termination of the
system’s execution. Section 4.2 details how such properties
are used in our approach.

In the remainder of this section, we first present a SMG
model of Znn that enables the comparison of latency-aware
against non-latency-aware adaptation. We then describe
how these models can be analyzed and show some results
for different instances of the model.

4.1 SMG Model
Our formal model is implemented in PRISM-games [7],

an extension of the probabilistic model-checker PRISM [22]
for modeling and analyzing SMGs. Our game is played in
turns by two players that are in control of the behavior of
the environment and the system, respectively. The SMG
model consists of the following parts:
Player definition. Listing 1 illustrates the definition of the
players in the stochastic game: player env is in control of all
the (asynchronous) actions that the environment can take
(as defined in the environment module), whereas player sys

controls all transitions that belong to the target system mod-
ule.5 Global variable turn in line 4 is used to make players
alternate, ensuring that for every state of the model, only
one player can take action. Turn-based gameplay suffices to
naturally model the interplay between the environment and
the system, which only senses environment information and
reacts to it if necessary at discrete time points.

1 player env environment endplayer
2 player sys target system,[enlist],[enlist trigger],[discharge] endplayer
3 const ENV TURN=1, SYS TURN=2;
4 global turn:[ENV TURN..SYS TURN] init ENV TURN;

Listing 1: Player definition for Znn’s SMG

Environment. The environment is in control of the evolu-
tion of time and other variables of the execution context that
are out of the system’s control (e.g., service requests arriv-
ing at the system). The choices in the environment module
are specified non-deterministically to obtain a representative
specification of the environment (through strategy synthe-
sis) that is not limited to specific behaviors, since this would
limit the generality of our analysis. Listing 2 shows the en-
coding used for the environment, in which Lines 1-3 define
different constants that parameterize its behavior:6

• MAX TIME defines the time frame for the system’s exe-
cution in the model ([0,MAX TIME]).

• TAU sets time granularity, defining the frequency with
which the environment updates the value of non-contro-
llable variables, and the system responds to these changes.
The total number of turns for both players in the SMG

5Actions enlist trigger, enlist, and discharge are explicitly la-
beled to improve readability (see Listing 3), but are still
asynchronous in our model.
6Constant values not defined in the model are provided as
command-line input parameters to the tool.

is MAX TIME/TAU. Two consecutive turns of the same
player are separated by a time period of duration TAU.

• MAX ARRIVALS constrains the maximum total number
of requests that can arrive at the system for processing
throughout its execution. Unconstrained arrivals would
result in an unrealistic behavior of the environment (e.g.,
by following the strategy of continuously flooding the sys-
tem with requests).

• MAX INST ARRIVALS is the maximum number of arrivals
that the environment can place for the system to process
during its turn (i.e., during one TAU time period).

1 const MAX TIME;
2 const TAU;
3 const MAX ARRIVALS, MAX INST ARRIVALS;
4

5 module environment
6 t : [0..MAX TIME] init 0;
7 arrivals total : [0..MAX ARRIVALS] init 0;
8 arrivals current : [0..MAX INST ARRIVALS] init 0;
9 a upd : bool init false;

10 [] (t<MAX TIME) & (turn=ENV TURN) &
(arrivals total+x<MAX ARRIVALS) & (!a upd) −>

(arrivals current’=x) & (a upd’=true);
11 ...
12 [] (t<MAX TIME) & (turn=ENV TURN) & (a upd) −>

1:(t’=t+TAU) & (a upd’=false) &
(arrivals total’=arrivals total+arrivals current) &
(turn’=SYS TURN);

13 endmodule

Listing 2: Environment module

Moreover, lines 6-9 declare the different variables that de-
fine the state of the environment:

• t keeps track of execution time.

• arrivals total keeps track of the accumulated number of
arrivals throughout the execution.

• arrivals current is the number of request arrivals during
the current time period.

Each turn of the environment consists of two steps:

1. Setting the amount of request arrivals for the current time
period. This is achieved through a set of commands that
follow the pattern shown in Listing 2, line 10: the guard
in the command checks that (i) it is the turn of the en-
vironment to move, (ii) the end of the time frame for
execution has not been reached yet, and (iii) the value
of request arrivals for the current time period has not
been set yet (controlled by flag a upd). If the guard is
satisfied, the command sets the value of request arrivals
for the current time period (represented by x in the com-
mand). It is worth noticing that there may be as many
of these commands as different possible values can be as-
signed to the number of request arrivals for the current
time period (including zero for no arrivals). Probabilities
in these commands are left unspecified, since it will be up
to the strategy followed by the player (to be synthesized
based on an rPATL specification) to provide the discrete
probability distribution for this set of commands.

2. Updating the values of the different environment vari-
ables (line 12), by: (i) increasing the t time variable one
step, and (ii) adding the number of request arrivals for the
current time period to the accumulator arrivals total. In
addition, the turn of the environment player finishes when
this command is executed, since it modifies the value of
variable turn, yielding control to the system player.



System. Module target system (Listing 3) models the be-
havior of the target system (including the execution of tac-
tics upon it), and is parameterized by the constants:

• MIN SERVERS and MAX SERVERS, which specify the
minimum and maximum number of active servers that
a valid system configuration can have.

• INIT SERVERS is the number of active servers that the
system has in its initial configuration.

• ENLIST LATENCY is the latency of the tactic for enlist-
ing a server, measured in number of time periods (i.e.,
the real latency for the tactic in time units is TAU * EN-

LIST LATENCY). In our model, tactic latencies are always
limited to multiples of the time period duration.

• MAX RT and INIT RT, which specify the system’s maxi-
mum and initial response times, respectively.

1 const MIN SERVERS, MAX SERVERS, INIT SERVERS;
2 const ENLIST LATENCY;
3 const MAX RT, INIT RT;
4

5 module target system
6 s : [0..MAX SERVERS] init INIT SERVERS;
7 rt : [0..MAX RT] init INIT RT;
8 counter:[−1..ENLIST LATENCY] init −1;
9 [] (s<=MAX SERVERS) & (turn=SYS TURN) & (counter!=0) −>

(counter’=counter>0?counter−1:counter) &
(turn’=ENV TURN) & (rt’=totalTime);

10 [enlist trigger] (s<MAX SERVERS) & (turn=SYS TURN) &
(counter=−1) −> (counter’=ENLIST LATENCY) &
(turn’=ENV TURN) & (rt’=totalTime);

11 [enlist] (s<MAX SERVERS) & (turn=SYS TURN) & (counter=0)
−> 1: (s’=s+1) & (counter’=−1) & (turn’=ENV TURN) &
(rt’=totalTime);

12 [discharge] (s>MIN SERVERS) & (turn=SYS TURN) &
(counter!=0) −> (s’=s−1) &
(counter’=counter>0?counter−1:counter) &
(turn’=ENV TURN) & (rt’=totalTime) ;

13 endmodule

Listing 3: System module

Moreover, the module includes variables which are rele-
vant to represent the current state of the system:

• s corresponds to the number of active servers.

• rt is the system’s response time.

• counter is used to control the delay between the triggering
of a tactic and the moment in which it becomes effective
in the target system. In this case, the variable is used to
control the delay between the activation of a server, and
the time instant in which it really becomes active.

During its turn, the system can decide not to execute any
tactics, returning the turn to the environment player by ex-
ecuting the command defined in line 9, Listing 3. Alterna-
tively, the system can execute one of these tactics:

• Activation of a server, which is carried out in two steps:

1. Triggering of activation through the execution of the
command labeled as enlist trigger (line 10). This com-
mand only executes if the current number of active servers
has not reached the maximum allowed, and the counter
that controls tactic latency is inactive (meaning that
there is not currently a server already booting in the
system). Upon execution, the command activates the
counter by setting it to the value of the latency for the
tactic, and returns the turn to the environment player.

2. Effective activation through the enlist command (line
11), which executes when the counter that controls tactic
latency reaches zero, incrementing the number of servers

in the system, and deactivating the counter. All the com-
mands in this module, except for the latter, decrement
the value of the counter 1 unit, if the counter is activated
(counter’=counter>0?counter-1:counter).

• Deactivation of a server, which is achieved through the
discharge command (line 12), which decrements the num-
ber of active servers. The command fires only if the cur-
rent number of active servers is greater than the minimum
allowed and the counter for server activation is not active.

In addition, all the commands in this module update the
value of the response time according to the request arrivals
during the current time period and the number of active
servers (computed using of an M/M/c queuing model [12],
encoded by formula totalTime).
Utility profile Utility functions and preferences are en-
coded using formulas and reward structures that enable the
quantification of instantaneous utility. Specifically, formulas
compute utility on the different dimensions of concern, and
reward structures weigh them against each other by using
the utility preferences.

1 formula uR = (rt>=0 & rt<=100? 1:0)
2 +(rt>100&rt<=200?1+(−0.01)∗((rt−100)/(100)):0)
3 ...
4 +(rt>2000&rt<=4000?0.25+(−0.25)∗((rt−2000)/(2000)):0)
5 +(rt>4000 ? 0:0);
6 ...
7 rewards ”rIU”
8 (turn=SYS TURN) : TAU∗(0.6∗uR +0.4∗uC);
9 endrewards

Listing 4: Utility functions and reward structure

Listing 4 illustrates in lines 1-5 the encoding of utility
functions using a formula for linear interpolation based on
the points defined for utility function UR in the first column
of Table 1. The formula in the example computes the util-
ity for performance, based on the value of the variable for
system response time rt. Moreover, lines 7-9 show how a
reward structure can be defined to compute a single utility
value for any state by using utility preferences. Specifically,
each state in which it is the turn of the system player to
move is assigned with a reward corresponding to the entire
elapsed time period of duration TAU, during which we as-
sume that instantaneous utility does not change.

1 rewards ”rEIU”
2 (turn=SYS TURN) : TAU∗(0.6∗uER +0.4∗uC);
3 endrewards

Listing 5: Expected utility reward structure

In latency-aware adaptation, the instantaneous real util-
ity extracted from the system coincides with the utility ex-
pected by the algorithm’s computations during the tactic
latency period. However, in non-latency-aware adaptation,
the instantaneous utility expected by the algorithm during
the latency period for activating a server does not match the
real utility extracted for the system, since the new server has
not yet impacted the performance. To enable analysis of real
vs. expected utility in non-latency-aware adaptation, we add
to the model a new reward structure that encodes expected
instantaneous utility rEIU (Listing 5). In this case, the util-
ity for performance during the latency period (encoded in
formula uER) is computed analogously to uR in Listing 4,
but based on the response time that the system would have
with s+1 servers during the latency period.



4.2 Analysis
In order to compare latency-aware vs. non-latency-aware

adaptation, we make use of rPATL specifications that en-
able us to analyze (i) the maximum utility that adaptation
can guarantee, independently of the behavior of the envi-
ronment (worst-case scenario), and (ii) the maximum utility
that adaptation is able to obtain under ideal environmental
conditions (best-case scenario).

4.2.1 Latency-aware Adaptation

Worst-case scenario analysis. We define the real guar-
anteed accrued utility (Urga) as the maximum real instanta-
neous utility reward accumulated throughout execution that
the system player is able to guarantee, independently of the
behavior of the environment player:

Urga , 〈〈sys〉〉RrIU
max=?[F

c t = MAX TIME]

This enables us to obtain the utility that an optimal self-
adaptation algorithm would be able to extract from the sys-
tem, given the most adverse possible conditions of the envi-
ronment. Alternatively, Urga can also be obtained by com-
puting a strategy for the environment, based on the mini-
mization of the same reward:

〈〈env〉〉RrIU
min=?[F

c t = MAX TIME]

Best-case scenario analysis. To obtain the real maximum
accrued utility achievable (Urma), we specify a coalition of
the system and environment players, which behave cooper-
atively to maximize the utility reward:

Urma , 〈〈sys, env〉〉RrIU
max=?[F

c t = MAX TIME]

4.2.2 Non-latency-aware Adaptation

In the case of non-latency-aware adaptation, the real util-
ity does not coincide with the expected utility that an arbi-
trary algorithm would employ for decision-making, therefore
we need to proceed with the analysis in two stages:

1. Compute the strategy that the adaptation algorithm would
follow based on the information it employs about expected
utility. That strategy is computed based on an rPATL
specification that obtains the expected guaranteed ac-
crued utility (Uega) for the system player:

Uega , 〈〈sys〉〉RrEIU
max=?[F

c t = MAX TIME]
For the specification of this property we employ the ex-
pected utility reward rEIU (Listing 5) instead of the real
utility reward rIU. Moreover, it is worth observing that
for latency-aware adaptation Uega = Urga.

2. Verify the specific property of interest (e.g., Urga, Urma)
under the generated strategy. We do this by using PRISM-
games to build a product of the existing game model and
the strategy synthesized in the previous step, obtaining a
new game under which further properties can be verified.
In our case, once we have computed a strategy for the
system player to maximize expected utility, we quantify
the reward for real utility in the new game in which the
system player strategy has already been fixed.

4.3 Results
Table 2 compares the results for the utility extracted from

the system by a latency-aware vs. a non-latency-aware ver-
sion of the system player, for two different models of Znn
that represent an execution of the system during 100 and
200s, respectively. The models consider a pool of up to 4

servers, out of which 2 are initially active. The period du-
ration TAU is set to 10s, and for each version of the model,
we compute the results for three variants with different la-
tencies for the activation of servers of up to 3*TAU s. The
maximum number of arrivals that the environment can place
per time period is 20, whereas the time it takes the system
to service every request is 1s.
We define the delta between the expected and the real

guaranteed utility as:

∆Uer = (1−
Uega

Urga
)× 100

Moreover, we define the delta in real guaranteed utility
between latency-aware an non-latency aware adaptation as:

∆Urga = (1−
Un

rga

Ul
rga

)× 100,

where Un
rga and U l

rga designate the real guaranteed ac-
crued utility for non-latency-aware and latency-aware adap-
tation, respectively. The delta in real maximum accrued
utility (∆Urma) is computed analogously to ∆Urga.

Table 2 shows that latency-aware adaptation outperforms
in all cases its non-latency-aware counterpart. In the worst-
case scenario, latency-aware adaptation is able to guaran-
tee an increment in utility extracted from the system, inde-
pendently of the behavior of the environment (∆Urga) that
ranges between approximately 10 and 34%, increasing pro-
gressively with higher tactic latencies. In the best-case sce-
nario (cooperative environment), the maximum utility that
latency-aware adaptation can achieve does not experience
noticeable variation with latency, staying in the range 19-
23% in all cases. Regarding the delta between expected and
real utility that adaptation can guarantee, we can observe
that ∆Uer is always zero in the case of latency-aware adap-
tation, since expected and real utilities always have the same
value, whereas in the case of non-latency-aware adaptation
there is a remarkable decrement that ranges between 24 and
48%, also progressively increasing with higher tactic latency.

5. LATENCY-AWARE ADAPTATION
Latency-aware adaptation takes into account the tactics’

latency when deciding how to adapt. In our approach, the
goal is to consider the latency of the tactics so that the sum
of utility provided by the system over time is maximized.
The effect of tactic latency on utility is that for tactics that
have some latency, the system does not start to accrue the
utility gain associated with the tactic until some time af-
ter the enactment of the tactic. Moreover, negative impacts
of the tactic may have no latency, and start without delay.
For example, when adding a server to the system, the server
takes some time to boot and be online, whereas it starts con-
suming power—and thereby increases cost—immediately. In
this example, it means that the tactic to add a server causes
a drop in utility before it results in a gain.
Another consequence of tactic latency is that some near-

future system configurations can be infeasible. For example,
let us suppose that the system has to deal with an increase
in load within 5 seconds, and it could handle that with an
additional server. If enlisting an additional server takes 10
seconds, then the desired configuration that has one addi-
tional server 5 seconds into the future is infeasible. Current
approaches that do not take latency into account would con-
sider that solution regardless of whether it is feasible or not.
When proactively looking ahead, taking adaptation latency



Table 2: SMG model checking results for Znn
MAX TIME Latency Latency-Aware Non-Latency-Aware ∆Urga ∆Urma

(s) (s) Uega Urga ∆Uer(%) Urma Uega Urga ∆Uer(%) Urma (%) (%)

TAU 53.77 53.77 0 99.6 65.97 48.12 -27.05 79.99 10.5 19.68

100 2*TAU 49.35 49.35 0 99.6 64.3 42.1 -34.5 78.39 14.69 21.29

3* TAU 45.6 45.6 0 99.6 64.3 33.25 -48.2 78.39 27 21.29

TAU 110.02 110.02 0 199.6 127.25 95.9 -24.63 156.79 12.83 21.44

200 2*TAU 105.6 105.6 0 199.6 125.57 76.6 -38.99 155.19 27.46 22.24

3* TAU 101.17 101.17 0 199.6 123.9 66.15 -46.6 153.59 34.61 23.05

into account allows the adaptation mechanism to rule out
infeasible configurations from the adaptation space.

A complication arises when tactic latency is longer than
the interval between adaptation decisions. When that is the
case, it is possible that during an adaptation decision, a tac-
tic that has been previously started has not yet reached the
point where its effect will have been realized. If the deci-
sions are made based only on the currently observed state
of the system, ignoring the expected effect of adaptations in
progress, the system will overcompensate, starting unneces-
sary adaptations. What is needed is a model of the system
that not only represents the current state of the system, but
also keeps track of the expected state of the system in the
near future based on the tactics that have been started but
have not yet completed.

5.1 Algorithm
The algorithm we present is an extension of an algorithm

developed by Poladian et al. to compute the optimal se-
quence of adaptation decisions for anticipatory dynamic con-
figuration [26]. Using dynamic programming and relying on
a perfect prediction of the environment for the duration of a
system run, their algorithm can find the adaptation decision
that at each time step maximizes the future utility, while ac-
counting for the penalty of switching configurations. They
showed that the algorithm had pseudo-polynomial time com-
plexity, and was therefore suitable for online adaptation.

The key improvement our algorithm brings is how the la-
tency of tactics is taken into account. On the one hand,
there is an adaptation cost that latency induces. For exam-
ple, if adding a server takes λ seconds from the time a server
is powered up until it can start processing requests, and
∆Uc is the additional cost the new server incurs, then the
adaptation cost is λ∆Uc. This cost could be partially han-
dled by the original algorithm, as a reconfiguration penalty.
However, that is not sufficient to handle the other issues
previously mentioned that latency brings, namely, the infea-
sibility of configurations and the need to track adaptation
progress. Our algorithm for latency-aware proactive adap-
tation (Algorithm 1) explicitly handles the issues that arise
due to tactic latency.

In reactive adaptation, the decision algorithm is typically
invoked upon events that require an adaptation to be per-
formed. However, for proactive adaptation, the decision
must be done periodically, looking ahead for future states
that may require the system to adapt. This algorithm is
therefore run periodically, with a constant interval between
runs. We limit the look-ahead of the algorithm to a near-
term horizon, which in turn limits how far into the future
the environment state needs to be estimated.7

The algorithm relies on these functions and variables:
7Environment state estimation is beyond the scope of our
work, but techniques such as Poladian et al.’s calculus for
combining multiple source of predictions [26] can be used.

• C is the set of possible configurations, and Ci is the ith
configuration, for i ∈ [1 . . . |C|].

• servers(c) is the number of active servers (i.e., servers
that can process requests) in configuration c.

• totalServers(c) is the total number of servers in config-
uration c, including active servers and servers that have
been powered up but are not active yet.

• λ is the amount of time it takes for a server to become
active after being powered up.

• sys(x) is the expected system configuration x time units
into the future. This function is used to query the model
of the system that keeps track of adaptations in progress
to project what is the expected system configuration in
the near future. The current system configuration can be
obtained with sys(0).

• env(x) is the expected environment state x time units into
the future.

• τ is the length of evaluation period.

• H is the look-ahead horizon in terms of evaluation peri-
ods. It is required that τH ≥ λ so that the algorithm
is able to evaluate the utility after a new server becomes
active.

• U(c, e) is the instantaneous utility provided by configura-
tion c in environment e.

• ∆Uc(i, j) is the difference in cost (negative utility) expe-
rienced when changing from a configuration with i servers
to one with j servers.

To do dynamic programming, the algorithm uses two ma-
trices, u and n, to store partial solutions. The element ui,t

holds the utility projected to be achieved from the evalua-
tion period t (with t = 0 being the current period, t = 1 the
next one, and so on) until the horizon if the system has con-
figuration Ci at evaluation period t (a value of −∞ is used
to represent infeasible solutions). The element ni,t holds the
configuration that the system must adopt in period t+ 1 to
attain the projected utility ui,t if the configuration at time
t is Ci. The loop in lines 1-4 initialize the elements of these
matrices at the horizon. In this case, the projected util-
ity of a configuration is the utility that configuration would
achieve given the state of the environment predicted at the
horizon. The following loop (lines 5-29) works backwards
from the horizon, computing the partial solutions using the
partial solutions previously found. For each configuration
(lines 6-28), it computes its projected utility or deems the
configuration infeasible. At any given time, a configuration
is feasible if either the system is expected to have enough
active servers at that time, or if there is enough time to
add the needed servers (line 9). For a feasible solution,
the projected utility it can achieve is the sum of the util-
ity the configuration obtains in that particular evaluation
period (line 10), and the maximum utility it can achieve in
the periods after that, taking into account any adaptation
costs. To compute the latter, the algorithm iterates over



all the feasible configurations that can follow (lines 12-26)
to find the adaptation that maximizes the projected utility
(lines 21-24). The adaptation cost incurred for going from
configuration Ci in period t to Cj in period t+1 is computed
in lines 14-19. To do so, we must determine how many ac-
tive servers will already be available in period t, and find the
cost increase, if any, to get to the number of active servers
needed by configuration Cj . In general, the number of active
servers available in period t, which is the number of servers
required by configuration Ci, will be carried over to period
t+1 if needed because they will already be active. However,
if more servers are expected to be active in period t + 1,
i.e., in the expected system configuration (sys((t+1)τ)), we
can assume that there will be that number of active servers
(line 15), as long as not enough time will have passed to
allow the decision of removing a server (line 14).8

Once all the possible solutions have been computed, the
algorithm searches for the configuration the system should
have at the current time to maximize the projected util-
ity (line 30). Finally, it determines if more servers need to
be added now so that they are active by the time they are
needed. It does so by looking at the sequence of configu-
rations that should be adopted in the following evaluation
periods (lines 32-40). The algorithm returns the number
of servers that should be added to (if positive) or removed
from (if negative) the system (line 41), taking into account
the latency of the adaptation tactics.

5.2 Simulation
We implemented a simulation of a self-adaptive Znn with

two goals. One was to evaluate the improvement that our al-
gorithm for latency-aware (LA) proactive adaptation achieves
compared to a non-latency-aware (NLA) approach. The sec-
ond one, was to compare the theoretical results obtained
with the SMG for generic NLA and LA algorithms with the
results obtained with a concrete algorithm. Using simula-
tion allowed us to run many repetitions of the experiments
with randomly generated behaviors of the environment.

The simulation was implemented using OMNeT++, an
extensible discrete event simulation environment [27]. It
simulates the arrival of requests from clients, randomly gen-
erating requests. The requests arrive at the load balancer
of Znn, and are forwarded to one of the idle servers. If no
server is idle, then the requests are queued in FIFO order
until one server becomes available. Each server processes
one request at a time, with a service time distributed with
an exponential distribution with a rate of 1.

The inter-arrival times between client requests are gener-
ated randomly with a rate that changes periodically, match-
ing the possibilities of the environment in the SMG. Every
τ units of time, a new arrival rate is selected randomly from
the interval [0, 2] with a uniform distribution. That rate is
then used to generate exponentially distributed inter-arrivals
until the next rate is selected. To be able to simulate the
execution of the system with the same random pattern of
client requests using each of the two algorithms, the request
inter-arrival times and the service times are drawn from two

8When planning ahead, we assume that a server will not
be removed before it becomes active (that is, λ units of
time after it was added), otherwise, adding it in the first
place would have made no sense. However, we do consider
the worst case of a server being removed after having been
active for just one evaluation period.

Algorithm 1 Latency-aware proactive adaptation

1: for all i ∈ [1 . . . |C|] do
2: ui,H ← τU(Ci, env(τH))
3: ni,H ← 0 // no next state

4: end for

5: for t = H − 1 downto 0 do

6: for all i ∈ [1 . . . |C|] do
7: ui,t ← −∞ // assume infeasible configuration

8: ni,t ← 0
9: if servers(Ci) ≤ servers(sys(tτ)) ∨ λ ≤ tτ then

10: ulocal ← τU(Ci, env(tτ))
11: // find the next best configuration after i

12: for all j ∈ [1 . . . |C|] do
13: if uj,t+1 > −∞ then

14: if tτ < λ then

15: start ← max(servers(Ci), servers(sys((t +
1)τ)))

16: else

17: start← servers(Ci)
18: end if

19: cost← max(0, λ∆Uc(start, servers(Cj))
20: uprojected ← uj,t+1 + ulocal − cost
21: if uprojected > ui,t then

22: ui,t ← uprojected

23: ni,t ← j
24: end if

25: end if

26: end for

27: end if

28: end for

29: end for

30: best← argmaxi ui,0 // best starting configuration

31: // find if there is a config with more servers that must be

started now

32: i← best
33: t← 0
34: while t < H ∧ (t + 1)τ ≤ λ do

35: i← ni,t

36: if servers(Ci) > servers(Cbest) then

37: best← i
38: end if

39: t← t + 1
40: end while

41: return servers(Cbest)− totalServers(sys(0))

separate random number generators. Thus, we can compare
the utility each algorithm achieves when the system faces
the same pattern of client requests.
The self-adaptive layer of the simulated system works as

follows. The system is monitored by keeping track of request
inter-arrival times when a client request arrives, and of the
request response times every time a request processing com-
pletes. Once every evaluation interval τ , these observations
are used to compute their average and standard deviation
for the period since the last evaluation. Using the average
response time, and the number of servers in the system, the
utility accrued since the last evaluation is computed using
the utility functions and preferences shown in Table 1.
Next, the adaptation algorithm is used to determine if

the system should self-adapt and how. We implemented
both the latency-aware algorithm (Algorithm 1) and a non-
latency-aware algorithm. The latter is basically the same as
the former, except that it does not account for latency other
than by considering the adaptation penalty induced by the
cost of having a server powered until becomes active. Indeed,
the NLA algorithm can be obtained by replacing all the
occurrences of λ in Algorithm 1, except for the one in line 19,
with 0. Since the SMG model can only handle the addition
or removal of one server at a time, the implementation of
the algorithms were modified to adhere to that limitation so
that the results were comparable.
The sys(x) function used by the algorithms was imple-



mented by maintaining a model of the system configuration
that keeps track of the number of servers in the system, and
how many of them are active. In addition, the model keeps
a list of expected changes in the future. For example, when
a new server is added to the system, an expected change
reflecting that the server becomes active is recorded with an
expected time of λ into the future. When sys(x) is invoked,
the expected system state at x time units into the future
can be obtained by taking the current system configuration
and applying all the changes expected for the following x
time units. When a server actually becomes active in the
simulation, the model of the current system configuration is
updated to reflect that change and the corresponding entry
is removed from the list of expected system changes.

The predictive model of the environment, env(x) was im-
plemented as an oracle that can predict perfectly the average
and variance of the request inter-arrival times for the same
horizon used by the algorithm. Although the request arrivals
are randomly generated in the simulation, a perfect pre-
diction can still be achieved by generating the inter-arrival
times before they are consumed by the simulation.

Implementing the U(c, e) function requires first estimat-
ing the average response time for requests when the system
has configuration c, and the environment is e. In this case,
the relevant properties of the environment are the average
and variance of the inter-arrival times. To estimate the aver-
age response time needed for the utility calculation, we used
queueing theory with a G/M/c queueing model (i.e., for ar-
rivals with a general distribution,9 exponentially distributed
service times, and s servers) [17]. Once the average response
time is estimated in this way, the utility is estimated using
the utility functions and preferences shown in Table 1.

After the adaptation algorithm has determined how the
system has to be changed, the execution of the adapta-
tion tactics is carried out by adding or removing servers as
needed. The standard queuing components of OMNET++
were modified to support this dynamic reconfiguration. Fur-
thermore, the server component was modified to simulate
the latency of enlisting a server.

5.3 Results
We ran the simulation with the same parameters used for

the SMG analysis, as described in 4.3. The horizon used
for the algorithms was computed so that if the system was
running with one server, it had a horizon large enough to
be able to compute the effect of adding the three remain-
ing servers. For that reason, the horizon was calculated as
3λ
τ
+1, the number of periods needed to enlist three servers

plus one more period to consider the impact on utility of the
change. For each combination of parameters, the simulation
was run 1000 times to obtain the statistics shown in Table 3.
On average, the latency-aware algorithm outperformed the
non-latency-aware one. The LA algorithm obtained on av-
erage about 5% more utility when the tactic latency was
equal to the evaluation period, and 10% for latencies two
and three times larger than the evaluation period. The stan-

9We chose to use a model for a general distribution of ar-
rivals since: (i) although arrivals are generated with an expo-
nential distribution, the rate parameter of the distribution
is changed periodically, and (ii) the queueing model is for
steady-state behavior and does not account for any back-
log of requests that could have remained in the system from
a previous period with higher traffic intensity. Hence, we
found the general distribution model was a better fit.

dardized effect size measure statistic Â12 [2] shows that LA
outperforms NLA 66% to 81% of the times, depending on
the parameters. For several combinations of parameters, the
minimum percentual utility difference ∆U(%) was negative,
meaning that NLA did better. This is due to a limitation
of the queueing model used by the algorithms to estimate
the response time of different configurations, because it com-
putes the steady-state response time, and, therefore, ignores
the effect of arrival spikes that may leave a backlog of ar-
rivals to be processed in later periods. The LA algorithm
avoids adaptation when there are transient increases in load
if the cost of enlisting a server will be higher than the nega-
tive impact of not adding it. Because of the limitation of the
queueing model, it sometimes underestimates that negative
effect. Since the NLA algorithm does not account for the la-
tency of the tactic, it is more prone to add servers, and that
gives it an advantage in these cases. These situations were
not very common in our experiment runs, as indicated by
the 10% quantile, which, except for the cases with the lowest
tactic latency, was positive. Furthermore, it is worth noting
that this is a limitation of the U(c, e) function used by the
algorithm, and not a problem with the algorithm itself.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have described an analysis technique

based on model checking of stochastic multiplayer games
that enables the quantification of the potential benefits that
different types of algorithms for decision making in adapta-
tion can yield. We have shown how this technique can be
used in the context of comparing proactive adaptation al-
gorithms that consider information about tactic latency for
decision-making, against those that do not account for it.
We have used Znn.com to illustrate our approach.
Our results show that latency-aware proactive adaptation

always performs better than non-latency-aware adaptation
both in the worst and best-case scenarios, with progressively
increasing improvements with higher tactic latencies.
A current limitation of the approach is that its scalability

is limited by PRISM-games, which currently uses explicit-
state data structures and is to the best of our knowledge the
only tool supporting model-checking of SMGs. In our case,
the largest SMG model employed for Znn has of the order
of 106 states, whereas the results presented in [7] show that
the current version of the tool can handle models of up to
107 states in a common desktop PC. However, the authors
of PRISM-games are developing a symbolic (BDD-based)
version of the tool that will improve scalability.
We have also proposed a latency-aware proactive adapta-

tion algorithm that is able to exploit predictions about the
future behavior of the environment. We have compared our
algorithm against the proactive algorithm presented in [26],
which does not consider latency, showing that latency-aware
adaptation achieves higher utility.
Regarding future work, we plan to instantiate our adapta-

tion analysis technique in different contexts. In particular,
we are working on applying this approach to self-protecting
systems, studying how different adaptation alternatives can
minimize the damage that an attacker can inflict. We also
aim at refining the approach to do run-time synthesis of
proactive adaptation strategies based on SMGs. Concern-
ing latency-aware adaptation, we aim at exploring how tactic
latency information can be further exploited to attain better
results both in proactive and reactive adaptation (e.g., by



Table 3: Simulation results for Znn
MAX TIME Latency Latency-Aware Non-Latency-Aware ∆U(%)

(s) (s) min. avg. max. min. avg. max. Â12 min. 10% quant. avg. max.

TAU 39.18 67.29 84.41 33.80 62.63 84.49 0.66 -27.15 -0.65 6.73 31.32

100 2*TAU 44.66 69.33 84.55 36.33 62.31 83.20 0.73 -23.86 3.10 10.34 37.69

3* TAU 48.05 69.40 84.55 31.14 62.48 83.20 0.72 -0.88 3.12 10.24 38.66

TAU 81.99 133.20 167.20 82.48 125.00 156.90 0.69 -15.63 -0.96 5.98 21.70

200 2*TAU 105.90 138.10 167.20 80.46 124.40 160.00 0.81 -7.82 4.89 10.05 30.53

3* TAU 106.20 138.40 167.20 85.81 124.70 160.00 0.81 0.00 4.85 10.01 28.32

parallelizing tactic executions). We will also generalize the
algorithm to consider multiple tactics with different latency,
as well as prediction and tactic latency uncertainty. More-
over, we will implement our algorithms in Rainbow/Znn.
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