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Abstract. We show that any nonzero orbit under a noncompact, simple, irreducible linear
group is dense in the Bohr compactification of the ambient space.

1. Introduction
Let V be a locally compact abelian group,V∗ its Pontrjagin dual andbV its Bohr compact-
ification, i.e.bV is the dual of the discretized groupV∗. On identifyingV with its double
dual we have a dense embeddingV →֒ bV, viz.

{continuous characters ofV∗} →֒ {all characters ofV∗}.

The relative topology ofV in bV is known as theBohr topologyof V. Among its many
intriguing properties (surveyed in [G07]) is the observation due to Katznelson [K73a; G79,
§7.6] that very “thin” subsets ofV can be Bohr dense in very large ones.

While Katznelson was concerned with the caseV = Z (the integers), we shall illustrate
this phenomenon in the setting whereV is the additive group of a real vector space, and
the subsets of interest are the orbits of a Lie group acting linearly onV. Indeed our aim is
to establish the following result, which was conjectured in[Z96, p. 45]:

Theorem 1. Let G be a noncompact, simple real Lie group and V a nontrivial, irreducible,
finite-dimensional real G-module. Then every nonzero G-orbit in V is dense in bV.

We prove this in §3 on the basis of four lemmas prepared in §2. Before that, let us record
a similar property ofnilpotentgroups. In that case, orbits typically lie in proper affine
subspaces, so we can’t hope for Bohr density in the whole space; but we have:

Theorem 2. Let G be a connected nilpotent Lie group and V a finite-dimensionalG-module
of unipotent type. Then every G-orbit in V is Bohr dense in itsaffine hull.

Proof. Recall thatunipotent typemeans that the Lie algebrag of G acts by nilpotent
operators. SoZ 7→ exp(Z)v is a polynomial map ofg onto the orbit ofv ∈ V, and the
claim follows immediately from [Z93, Theorem]. �
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2. Four lemmas
Our first lemma gives several characterizations of Bohr density — each of which can also
be regarded as providing a corollary of Theorem1.

Lemma 1. LetO be a subset of the locally compact abelian group V. Then the following
are equivalent:
(1) O is dense in bV;
(2) α(O) is dense inα(V) wheneverα is a continuous morphism from V to a compact

topological group;
(3) Every almost periodic function on V is determined by its restriction toO;
(4) Haar measureη on bV is the weak∗ limit of probability measuresµT concentrated

onO.

Proof. (1)⇔ (2): Clearly (2) implies (1) as the special case whereα is the natural inclusion
ι : V →֒ bV. Conversely, suppose (1) holds andα : V → X is a continuous morphism to a
compact group. By the universal property ofbV [D82, 16.1.1],α = β ◦ ι for a continuous
morphismβ : bV→ X. Now continuity ofβ impliesβ(ι(O)) ⊂ β(ι(O)), which is to say that
β(bV) ⊂ α(O) and henceα(V) ⊂ α(O), as claimed.

(1) ⇔ (3): Recall that a function onV is almost periodiciff it is the pull-back of a
continuousf : bV → C by the inclusionV →֒ bV. If two such functions coincide onO
andO is dense inbV, then clearly they coincide everywhere. Conversely, suppose thatO
is not dense inbV. Then by complete regularity [H63, 8.4] there is a nonzero continuous
f : bV→ C which is zero on the closure ofO in bV. Now clearly thisf is not determined
by its restriction toO.

(1) ⇔ (4) ([K73a]): Suppose thatη is the weak∗ limit of probability measuresµT

concentrated onO. So we haveµT( f )→ η( f ) for every continuousf , and the complement
of O in bV is µT -null [B04, Def. V.5.7.4 and Prop. IV.5.2.5]. Iff vanishes on the closure of
O in bV then so do allµT(| f |) and hence alsoη(| f |), which forcesf to vanish everywhere.
SoO is dense inbV. Conversely, suppose thatO is dense inbV. We have to show that
given continuous functionsf1, . . . , fn on bV andε > 0, there is a probability measureµ
concentrated onO such that|η( f j) − µ( f j)| < ε for all j. Writing

F = ( f1, . . . , fn) and η(F) = (η( f1), . . . , η( fn))

we see that this amounts to‖η(F) − µ(F)‖ < ε, where the norm is the sup norm inCn.
Now by [B04, Cor. V.6.1]η(F) lies in the convex hull ofF(bV) (which is compact by
Carathéodory’s theorem [B87, 11.1.8.7]). Soη(F) is a convex combination

∑N
i=1 λiF(ωi)

of elements ofF(bV). But F(O) is dense inF(bV), so we can findwi ∈ O such that
‖F(ωi) − F(wi)‖ < ε. Puttingµ =

∑N
i=1 λiδwi whereδwi is Dirac measure atwi , we obtain

the desired probability measureµ. �

Remark 1.One might wonder if condition (2) is equivalent to the followinga priori weaker
but already interesting property:
(2′) O has dense image in any compact quotient group ofV.
Here is an example showing that (2′) does notimply (2): Let V = R andO = Z ∪ 2πZ.
Then clearlyO has dense image in every compact quotientR/aZ. On the other hand,
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considering the irrational windingα : R → T2 defined byα(v) = (eiv, e2πiv), one checks
without trouble thatα(O) = T × {1} ∪ {1} × T, which is strictly smaller thanα(V) = T2.

Remark 2.A net of probability measuresµT converging to Haar measure onbV as in
(4) has been called ageneralized summing sequenceby Blum and Eisenberg [B74]. They
observed, among others, the following characterization.

Lemma 2. The following conditions are equivalent:
(1) µT is a generalized summing sequence;
(2) The Fourier transformŝµT (u) =

∫

bV
ω(u)dµT(ω) converge pointwise to the charac-

teristic function of{0} ⊂ V∗.

Proof. This characteristic function is the Fourier transform of Haar measureη onbV. Thus,
condition (2) says thatµT ( f ) → η( f ) for every continuous characterf (ω) = ω(u) of bV;
whereas condition (1) says thatµT ( f )→ η( f ) holds for every continuous functionf onbV.
Since linear combinations of continuous characters are uniformly dense in the continuous
functions onbV (Stone-Weierstrass), the two conditions imply each other. �

For our third lemma, letG be a group,V a finite-dimensionalG-module, and writeV∗

for the dual module whereinG acts contragrediently:〈gu, v〉 = 〈u, g−1v〉. We have

Lemma 3. Suppose that V is irreducible andφ(g) = 〈u, gv〉 is a nonzero matrix coefficient
of V. Then every other matrix coefficientψ(g) = 〈x, gy〉 is a linear combination of left and
right translates ofφ.

Proof. Irreducibility of V and (therefore)V∗ ensures thatu andv are cyclic, i.e. theirG-
orbits spanV∗ andV. So we can writex =

∑

i αigiu andy =
∑

j β jg jv, whenceψ(g) =
∑

i, j αiβ jφ(g−1
i gg j). �

Finally, our fourth preliminary result is the famous

Lemma 4 (Van der Corput) Suppose that F: [a, b] → R is differentiable, its derivative F′

is monotone, and |F′| > 1 on (a, b). Then
∣

∣

∣

∫ b

a
eiF(t)dt

∣

∣

∣ 6 3.

Proof. See [S93, p. 332], or [R05, Lemma 3] which actually gives the sharp bound 2.�

3. Proof of Theorem1
By Lemma1, it is enough to show that Haar measure onbV is the weak∗ limit of probability
measuresµT concentrated on the orbit under consideration; or equivalently (Lemma2), that
the Fourier transforms of theµT tend pointwise to the characteristic function of{0} ⊂ V∗.
(Here we identify the Pontrjagin dual with the dual vector space or module.)

To construct suchµT , we assume without loss of generality that the action ofG onV is
effective, so that we may regardG ⊂ GL(V). Let K ⊂ G be a maximal compact subgroup,
g = k + p a Cartan decomposition,a ⊂ p a maximal abelian subalgebra,C ⊂ a∗ a Weyl
chamber,P ⊂ a the dual positive cone, andH an interior point ofP; thus we have that
〈ν,H〉 is positive for all nonzeroν ∈ C. (For all this structure see, for example, [K73b].)
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4 R. Howe and F. Ziegler

We fix a nonzerov ∈ V, and for each positiveT ∈ R we letµT denote the image of the
product measure Haar× (Lebesgue/T) × Haar under the composed map

K × [0,T] × K Gv bV

(k, t, k′) kexp(tH)k′v

w ei〈·,w〉.

Here exp :a → A is the usual matrix exponential with inverse log :A → a, and the
brackets〈·, ·〉 denote both pairings,a∗ × a → R andV∗ × V → R. By construction theµT

are concentrated on the subsetGv of bV [B04, Cor. V.6.2.3]. There remains to show that as
T → ∞ we have, for every nonzerou ∈ V∗,

∫

K×K
dk dk′

1
T

∫ T

0
ei〈u,kexp(tH)k′v〉dt→ 0. (∗)

To this end, let
Fkk′(t) = 〈u, kexp(tH)k′v〉

denote the exponent in (∗). We are going to show that Lemma4 applies to almost every
Fkk′ . In fact, it is well known (see for example [K73b, Prop. 2.4 and proof of Prop. 3.4])
thata acts diagonalizably (overR) on V. Thus, lettingEν be the projector ofV onto the
weightν eigenspace ofa, we can write

Fkk′(t) =
∑

ν∈a∗

〈u, kEνk
′v〉e〈ν,H〉t.

Now we claim that there are nonzeroν such that the coefficient fν(k, k′) = 〈u, kEνk′v〉 is not
identically zero onK × K. (Then fν, being analytic, will be nonzeroalmost everywhere.)
Indeed, suppose otherwise. Then, writing anyg ∈ G in the formkak′ (KAK decomposition
[K02]), we would have

〈u, gv〉 =
∑

ν∈a∗

〈u, kEνk
′v〉e〈ν,log(a)〉 = 〈u, kE0k′v〉.

In particular the matrix coefficient〈u, gv〉would be bounded. Hence so would be all matrix
coefficients, since they are linear combinations of translates ofthis one (Lemma3); and
this would contradict the noncompactness ofG ⊂ GL(V).

So the setN = {ν ∈ a∗ : ν , 0, fν , 0} is not empty. It is also Weyl group invariant,
hence contains weightsν ∈ C for which we know〈ν,H〉 is positive. Therefore, maximizing
〈ν,H〉 overN produces a positive number〈ν0,H〉, in terms of which our exponent and its
derivatives can be written

dn

dtn
Fkk′(t) = e〈ν0,H〉t

∑

ν∈a∗

fν(k, k
′)〈ν,H〉ne〈ν−ν0,H〉t

where〈ν− ν0,H〉 < 0 in all nonzero terms except the one indexed byν0. (Here we assume,
as we may, thatH was initially chosen outside the kernels of all pairwise differences of
weights ofV.) From this it is clear that for almost all (k, k′) there is aT0 beyond which the
first two derivatives ofFkk′ are greater than 1 in absolute value. So Lemma4 applies and
gives

∣

∣

∣

∣

∣

∫ T

T0

eiFkk′ (t)dt
∣

∣

∣

∣

∣

6 3 ∀T.
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Therefore we have limT→∞ 1
T

∫ T

0
eiFkk′ (t)dt = 0 for almost all (k, k′), whence the conclusion

(∗) by dominated convergence. This completes the proof.

4. Outlook
Theorem1 says that theG-action onV\{0} is minimal[P83] in the Bohr topology. It would
be interesting to determine if it is still minimal, and/or uniquely ergodic, onbV \ {0}.

It is also natural to speculate whether our theorems have a common extension to more
general group representations. Here we shall content ourselves with noting two obstruc-
tions. First, Theorem1 clearly fails forsemisimple groups with compact factors. Secondly,
Theorem2 fails for V not of unipotent type, as one sees by observing that the orbits of R
acting onR2 by exp

(

t 0
0 −t

)

(i.e., hyperbolas) already have non-dense images inR2/Z2.

Acknowledgement.We thank Francis Jordan, who found the example in Remark 1.
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