Georgia Southern University

From the SelectedWorks of François Ziegler

May, 2015

Bohr Density of Simple Linear Group Orbits

Roger Howe, Yale University
François Ziegler, Georgia Southern University

Bohr density of simple linear group orbits

ROGER HOWE \dagger and FRANÇOIS ZIEGLER \ddagger
\dagger Department of Mathematics, Yale University, New Haven, CT 06520-8283, USA
(e-mail: howe@math.yale.edu)
\ddagger Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460-8093, USA
(e-mail: fziegler@georgiasouthern.edu)

(Received 15 November 2012 and accepted in revised form 26 July 2013)

Abstract

We show that any nonzero orbit under a noncompact, simple, irreducible linear group is dense in the Bohr compactification of the ambient space.

1. Introduction

Let V be a locally compact abelian group, V^{*} its Pontrjagin dual and $b V$ its Bohr compactification, i.e. $b V$ is the dual of the discretized group V^{*}. On identifying V with its double dual we have a dense embedding $V \hookrightarrow b V$, viz.

$$
\left\{\text { continuous characters of } V^{*}\right\} \hookrightarrow\left\{\text { all characters of } V^{*}\right\} .
$$

The relative topology of V in $b V$ is known as the Bohr topology of V. Among its many intriguing properties (surveyed in [G07]) is the observation due to Katznelson [K73a; G79, $\S 7.6]$ that very "thin" subsets of V can be Bohr dense in very large ones.

While Katznelson was concerned with the case $V=\mathbf{Z}$ (the integers), we shall illustrate this phenomenon in the setting where V is the additive group of a real vector space, and the subsets of interest are the orbits of a Lie group acting linearly on V. Indeed our aim is to establish the following result, which was conjectured in [Z96, p. 45]:

Theorem 1. Let G be a noncompact, simple real Lie group and V a nontrivial, irreducible, finite-dimensional real G-module. Then every nonzero G-orbit in V is dense in $b V$.

We prove this in $\S 3$ on the basis of four lemmas prepared in $\S 2$. Before that, let us record a similar property of nilpotent groups. In that case, orbits typically lie in proper affine subspaces, so we can't hope for Bohr density in the whole space; but we have:

Theorem 2. Let G be a connected nilpotent Lie group and V a finite-dimensional G-module of unipotent type. Then every G-orbit in V is Bohr dense in its affine hull.

Proof. Recall that unipotent type means that the Lie algebra \mathfrak{g} of G acts by nilpotent operators. So $Z \mapsto \exp (Z) v$ is a polynomial map of \mathfrak{g} onto the orbit of $v \in V$, and the claim follows immediately from [Z93, Theorem].

2. Four lemmas

Our first lemma gives several characterizations of Bohr density - each of which can also be regarded as providing a corollary of Theorem 1.

Lemma 1. Let O be a subset of the locally compact abelian group V. Then the following are equivalent:
(1) O is dense in $b V$;
(2) $\quad \alpha(O)$ is dense in $\alpha(V)$ whenever α is a continuous morphism from V to a compact topological group;
(3) Every almost periodic function on V is determined by its restriction to O;
(4) Haar measure η on $b V$ is the weak* limit of probability measures μ_{T} concentrated on O.

Proof. (1) \Leftrightarrow (2): Clearly (2) implies (1) as the special case where α is the natural inclusion $\iota: V \hookrightarrow b V$. Conversely, suppose (1) holds and $\alpha: V \rightarrow X$ is a continuous morphism to a compact group. By the universal property of $b V[\mathbf{D 8 2}, 16.1 .1], \alpha=\beta \circ \iota$ for a continuous morphism $\beta: b V \rightarrow X$. Now continuity of β implies $\beta(\overline{\iota(O)}) \subset \overline{\beta(\iota(O))}$, which is to say that $\beta(b V) \subset \overline{\alpha(O)}$ and hence $\alpha(V) \subset \overline{\alpha(O)}$, as claimed.
(1) $\Leftrightarrow(3)$: Recall that a function on V is almost periodic iff it is the pull-back of a continuous $f: b V \rightarrow \mathbf{C}$ by the inclusion $V \hookrightarrow b V$. If two such functions coincide on O and O is dense in $b V$, then clearly they coincide everywhere. Conversely, suppose that O is not dense in $b V$. Then by complete regularity [$\mathbf{H 6 3}, 8.4$] there is a nonzero continuous $f: b V \rightarrow \mathbf{C}$ which is zero on the closure of O in $b V$. Now clearly this f is not determined by its restriction to O.
(1) \Leftrightarrow (4) ([K73a]): Suppose that η is the weak* limit of probability measures μ_{T} concentrated on O. So we have $\mu_{T}(f) \rightarrow \eta(f)$ for every continuous f, and the complement of O in $b V$ is μ_{T}-null [B04, Def. V.5.7.4 and Prop. IV.5.2.5]. If f vanishes on the closure of O in $b V$ then so do all $\mu_{T}(|f|)$ and hence also $\eta(|f|)$, which forces f to vanish everywhere. So O is dense in $b V$. Conversely, suppose that O is dense in $b V$. We have to show that given continuous functions f_{1}, \ldots, f_{n} on $b V$ and $\varepsilon>0$, there is a probability measure μ concentrated on O such that $\left|\eta\left(f_{j}\right)-\mu\left(f_{j}\right)\right|<\varepsilon$ for all j. Writing

$$
F=\left(f_{1}, \ldots, f_{n}\right) \quad \text { and } \quad \eta(F)=\left(\eta\left(f_{1}\right), \ldots, \eta\left(f_{n}\right)\right)
$$

we see that this amounts to $\|\eta(F)-\mu(F)\|<\varepsilon$, where the norm is the sup norm in \mathbf{C}^{n}. Now by [B04, Cor. V.6.1] $\eta(F)$ lies in the convex hull of $F(b V)$ (which is compact by Carathéodory's theorem [B87, 11.1.8.7]). So $\eta(F)$ is a convex combination $\sum_{i=1}^{N} \lambda_{i} F\left(\omega_{i}\right)$ of elements of $F(b V)$. But $F(O)$ is dense in $F(b V)$, so we can find $w_{i} \in O$ such that $\left\|F\left(\omega_{i}\right)-F\left(w_{i}\right)\right\|<\varepsilon$. Putting $\mu=\sum_{i=1}^{N} \lambda_{i} \delta_{w_{i}}$ where $\delta_{w_{i}}$ is Dirac measure at w_{i}, we obtain the desired probability measure μ.

Remark 1. One might wonder if condition (2) is equivalent to the following a priori weaker but already interesting property:
$\left(2^{\prime}\right) \quad O$ has dense image in any compact quotient group of V.
Here is an example showing that (2^{\prime}) does not imply (2): Let $V=\mathbf{R}$ and $O=\mathbf{Z} \cup 2 \pi \mathbf{Z}$. Then clearly O has dense image in every compact quotient $\mathbf{R} / a \mathbf{Z}$. On the other hand,
considering the irrational winding $\alpha: \mathbf{R} \rightarrow \mathbf{T}^{2}$ defined by $\alpha(v)=\left(\mathrm{e}^{\mathrm{i} v}, \mathrm{e}^{2 \pi \mathrm{i} v}\right)$, one checks without trouble that $\overline{\alpha(O)}=\mathbf{T} \times\{1\} \cup\{1\} \times \mathbf{T}$, which is strictly smaller than $\overline{\alpha(V)}=\mathbf{T}^{2}$.

Remark 2. A net of probability measures μ_{T} converging to Haar measure on $b V$ as in (4) has been called a generalized summing sequence by Blum and Eisenberg [B74]. They observed, among others, the following characterization.

Lemma 2. The following conditions are equivalent:
(1) μ_{T} is a generalized summing sequence;
(2) The Fourier transforms $\hat{\mu}_{T}(u)=\int_{b V} \omega(u) d \mu_{T}(\omega)$ converge pointwise to the characteristic function of $\{0\} \subset V^{*}$.

Proof. This characteristic function is the Fourier transform of Haar measure η on $b V$. Thus, condition (2) says that $\mu_{T}(f) \rightarrow \eta(f)$ for every continuous character $f(\omega)=\omega(u)$ of $b V$; whereas condition (1) says that $\mu_{T}(f) \rightarrow \eta(f)$ holds for every continuous function f on $b V$. Since linear combinations of continuous characters are uniformly dense in the continuous functions on $b V$ (Stone-Weierstrass), the two conditions imply each other.

For our third lemma, let G be a group, V a finite-dimensional G-module, and write V^{*} for the dual module wherein G acts contragrediently: $\langle g u, v\rangle=\left\langle u, g^{-1} v\right\rangle$. We have

Lemma 3. Suppose that V is irreducible and $\phi(g)=\langle u, g v\rangle$ is a nonzero matrix coefficient of V. Then every other matrix coefficient $\psi(g)=\langle x, g y\rangle$ is a linear combination of left and right translates of ϕ.

Proof. Irreducibility of V and (therefore) V^{*} ensures that u and v are cyclic, i.e. their G orbits span V^{*} and V. So we can write $x=\sum_{i} \alpha_{i} g_{i} u$ and $y=\sum_{j} \beta_{j} g_{j} v$, whence $\psi(g)=$ $\sum_{i, j} \alpha_{i} \beta_{j} \phi\left(g_{i}^{-1} g g_{j}\right)$.

Finally, our fourth preliminary result is the famous
Lemma 4 (Van der Corput) Suppose that $F:[a, b] \rightarrow \mathbf{R}$ is differentiable, its derivative F^{\prime} is monotone, and $\left|F^{\prime}\right| \geqslant 1$ on (a, b). Then $\left|\int_{a}^{b} \mathrm{e}^{\mathrm{i} F(t)} d t\right| \leqslant 3$.

Proof. See [S93, p. 332], or [R05, Lemma 3] which actually gives the sharp bound 2.

3. Proof of Theorem 1

By Lemma 1, it is enough to show that Haar measure on $b V$ is the weak* limit of probability measures μ_{T} concentrated on the orbit under consideration; or equivalently (Lemma 2), that the Fourier transforms of the μ_{T} tend pointwise to the characteristic function of $\{0\} \subset V^{*}$. (Here we identify the Pontrjagin dual with the dual vector space or module.)

To construct such μ_{T}, we assume without loss of generality that the action of G on V is effective, so that we may regard $G \subset \mathrm{GL}(V)$. Let $K \subset G$ be a maximal compact subgroup, $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ a Cartan decomposition, $\mathfrak{a} \subset \mathfrak{p}$ a maximal abelian subalgebra, $C \subset \mathfrak{a}^{*}$ a Weyl chamber, $P \subset$ a the dual positive cone, and H an interior point of P; thus we have that $\langle v, H\rangle$ is positive for all nonzero $v \in C$. (For all this structure see, for example, [K73b].)

We fix a nonzero $v \in V$, and for each positive $T \in \mathbf{R}$ we let μ_{T} denote the image of the product measure Haar $\times($ Lebesgue $/ T) \times$ Haar under the composed map

$$
\begin{array}{rl}
K \times[0, T] \times K & \longrightarrow G v \\
\left(k, t, k^{\prime}\right) \longmapsto k \exp (t H) k^{\prime} v & b V \\
w \longmapsto \mathrm{e}^{\mathrm{i}\langle\cdot, w\rangle} .
\end{array}
$$

Here $\exp : \mathfrak{a} \rightarrow A$ is the usual matrix exponential with inverse $\log : A \rightarrow \mathfrak{a}$, and the brackets $\langle\cdot, \cdot\rangle$ denote both pairings, $\mathfrak{a}^{*} \times \mathfrak{a} \rightarrow \mathbf{R}$ and $V^{*} \times V \rightarrow \mathbf{R}$. By construction the μ_{T} are concentrated on the subset $G v$ of $b V[\mathbf{B 0 4}$, Cor. V.6.2.3]. There remains to show that as $T \rightarrow \infty$ we have, for every nonzero $u \in V^{*}$,

$$
\begin{equation*}
\int_{K \times K} d k d k^{\prime} \frac{1}{T} \int_{0}^{T} \mathrm{e}^{\mathrm{i}\left\langle u, k \exp (t H) k^{\prime} v\right\rangle} d t \rightarrow 0 \tag{*}
\end{equation*}
$$

To this end, let

$$
F_{k k^{\prime}}(t)=\left\langle u, k \exp (t H) k^{\prime} v\right\rangle
$$

denote the exponent in $(*)$. We are going to show that Lemma 4 applies to almost every $F_{k k^{\prime}}$. In fact, it is well known (see for example [K73b, Prop. 2.4 and proof of Prop. 3.4]) that \mathfrak{a} acts diagonalizably (over \mathbf{R}) on V. Thus, letting E_{v} be the projector of V onto the weight v eigenspace of \mathfrak{a}, we can write

$$
F_{k k^{\prime}}(t)=\sum_{v \in \mathfrak{a}^{*}}\left\langle u, k E_{\nu} k^{\prime} v\right\rangle \mathrm{e}^{\langle v, H\rangle t}
$$

Now we claim that there are nonzero v such that the coefficient $f_{v}\left(k, k^{\prime}\right)=\left\langle u, k E_{v} k^{\prime} v\right\rangle$ is not identically zero on $K \times K$. (Then f_{v}, being analytic, will be nonzero almost everywhere.) Indeed, suppose otherwise. Then, writing any $g \in G$ in the form $k a k^{\prime}$ ($K A K$ decomposition [K02]), we would have

$$
\langle u, g v\rangle=\sum_{v \in a^{*}}\left\langle u, k E_{v} k^{\prime} v\right\rangle \mathrm{e}^{\langle v, \log (a)\rangle}=\left\langle u, k E_{0} k^{\prime} v\right\rangle .
$$

In particular the matrix coefficient $\langle u, g v\rangle$ would be bounded. Hence so would be all matrix coefficients, since they are linear combinations of translates of this one (Lemma 3); and this would contradict the noncompactness of $G \subset \mathrm{GL}(V)$.

So the set $N=\left\{v \in \mathfrak{a}^{*}: v \neq 0, f_{v} \neq 0\right\}$ is not empty. It is also Weyl group invariant, hence contains weights $v \in C$ for which we know $\langle v, H\rangle$ is positive. Therefore, maximizing $\langle\nu, H\rangle$ over N produces a positive number $\left\langle v_{0}, H\right\rangle$, in terms of which our exponent and its derivatives can be written

$$
\frac{d^{n}}{d t^{n}} F_{k k^{\prime}}(t)=\mathrm{e}^{\left\langle\nu_{0}, H\right\rangle t} \sum_{v \in \mathrm{a}^{*}} f_{v}\left(k, k^{\prime}\right)\langle v, H\rangle^{n} \mathrm{e}^{\left\langle v-v_{0}, H\right\rangle t}
$$

where $\left\langle v-v_{0}, H\right\rangle<0$ in all nonzero terms except the one indexed by v_{0}. (Here we assume, as we may, that H was initially chosen outside the kernels of all pairwise differences of weights of V.) From this it is clear that for almost all $\left(k, k^{\prime}\right)$ there is a T_{0} beyond which the first two derivatives of $F_{k k^{\prime}}$ are greater than 1 in absolute value. So Lemma 4 applies and gives

$$
\left|\int_{T_{0}}^{T} \mathrm{e}^{\mathrm{i} F_{k k^{\prime}}(t)} d t\right| \leqslant 3 \quad \forall T
$$

Therefore we have $\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mathrm{e}^{\mathrm{i} F_{k k^{\prime}}(t)} d t=0$ for almost all $\left(k, k^{\prime}\right)$, whence the conclusion (*) by dominated convergence. This completes the proof.

4. Outlook

Theorem 1 says that the G-action on $V \backslash\{0\}$ is minimal $[\mathbf{P 8 3}]$ in the Bohr topology. It would be interesting to determine if it is still minimal, and/or uniquely ergodic, on $b V \backslash\{0\}$.

It is also natural to speculate whether our theorems have a common extension to more general group representations. Here we shall content ourselves with noting two obstructions. First, Theorem 1 clearly fails for semisimple groups with compact factors. Secondly, Theorem 2 fails for V not of unipotent type, as one sees by observing that the orbits of \mathbf{R} acting on \mathbf{R}^{2} by $\exp \left(\begin{array}{cc}t & 0 \\ 0 & -t\end{array}\right)$ (i.e., hyperbolas) already have non-dense images in $\mathbf{R}^{2} / \mathbf{Z}^{2}$.

Acknowledgement. We thank Francis Jordan, who found the example in Remark 1.

References

[B87] Marcel Berger, Geometry. I. Springer-Verlag, Berlin, 1987.
[B74] Julius Blum and Bennett Eisenberg, Generalized summing sequences and the mean ergodic theorem. Proc. Amer. Math. Soc. 42 (1974) 423-429.
[B04] Nicolas Bourbaki, Integration. I. Chapters 1-6. Springer-Verlag, Berlin, 2004.
[D82] Jacques Dixmier, C^{*}-algebras. North-Holland Publishing Co., Amsterdam, 1982.
[G07] Jorge Galindo, Salvador Hernández, and Ta-Sun Wu, Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups. In: Elliott Pearl (ed.) Open problems in topology. II, pp. 407-422. Elsevier B. V., Amsterdam, 2007.
[G79] Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis. Springer-Verlag, New York, 1979.
[H63] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, vol. 1. Springer-Verlag, Berlin, 1963.
[K73a] Yitzhak Katznelson, Sequences of integers dense in the Bohr group. Proc. Roy. Inst. of Tech. (Stockholm) (June 1973) 79-86.
[K02] Anthony W. Knapp, Lie groups beyond an introduction. Birkhäuser, Boston, MA, 2002.
[K73b] Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. École Norm. Sup. (4) 6 (1973) 413-455.
[P83] Karl Petersen, Ergodic theory. Cambridge University Press, Cambridge, 1983.
[R05] Keith M. Rogers, Sharp van der Corput estimates and minimal divided differences. Proc. Amer. Math. Soc. 133 (2005) 3543-3550.
[S93] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, NJ, 1993.
[Z93] François Ziegler, Subsets of \mathbf{R}^{n} which become dense in any compact group. J. Algebraic Geom. 2 (1993) 385-387.
[Z96] François Ziegler, Méthode des orbites et représentations quantiques. PhD thesis. Marseille: Université de Provence, 1996.

