Product variety, product quality, and evidence of Schumpeterian endogenous growth Data Appendix

Francesco Venturini

1 Data sources and methods

The analysis is performed on a panel sample of twenty US manufacturing industries for the period 1975-2003. Table A.1 lists industries according the ISIC Rev. 3 Classification, and groups them according to the OECD technology-based categories (OECD, 2005, Annex 1).

Patent data

Patent data come NBER USPTO patent data files Edition 2006, available at the URL: https://sites.google.com/site/patentdataproject/Home (Release April, 9 2009). Attention is paid to patents granted between 1976 and 2006, issued to US assignees, for which application year, IPC technological class and claimed priorities were available (1,386,267 applications). For each application, we computed the amount of both forward citations received and backward citations made existing patents. Patents are classified according to their application year and ISIC industry categories. For the latter we employed the ISIC/IPC concordance table developed by Schmock *et al.* (2003).

A threefold adjustment was implemented on patent data. First, the number of counts is corrected for the truncation associated with the time lag existing between the application date and the grant date. This lag leads the number of observed applica-

tions for the period after 2001 to be underestimated with respect to the true distribution, Following Hall *et al.* (2005), industry applications for the period 2002-2003, denoted by \tilde{I}_{it} , are corrected with a factor defined by the inverse of cumulative probabilities of the application-grant time lag, L_s of patents applied since the early 1990s on:

$$C_s = (\sum_{s=0}^{1} L_{2003-s})^{-1}, \qquad I_{it} = C_t * \widetilde{I}_{it}.$$

After eliminating the highest value assumed by C_s , the employed factor amounts to 1.24 for 2002 and and 3.02 for 2003. Adjusted patent counts are thus defined as shown on the right-hand side of the previous expression. Second, we apply the fixed-effect procedure developed by Hall *et al.*, 2001 to control for the effect of citation truncation. Indeed, the number of forward cites of the most recent applications is downward biased as such patents have a shorter time window to be cited; for this reason, forward citations are scaled on citation mean of overall manufacturing. Third, since cites made to existing patents by earlier applications are underestimated due to the fact that they can refer to a relatively small number of applications, the sectoral amount of backward cites is re-estimated by multiplying the average backward cites by the corrected amount of applications. Note that estimates do not remarkably change when the original number of backward cites is used in place of the adjusted one.

 A_{it} is defined as corrected patent applications, A_{it} as their cumulative value obtained through the perpetual inventory method and geometrical depreciation:

$$K_{it} = I_{it} + (1 - \delta)K_{it-1}, \quad K_{i0} = \frac{I_{i0}}{\delta + g_i}.$$

 δ is assumed to be constant among sectors and over time, set to 15%. The initial value K_{i0} is computed by means of Hall and Mairesse (1995)'s formula, where I_{i0} is the amount of patent counts at 1975, g_i the average annual rate of change of I_{it} over the period 1975-1985.

R&D data

R&D expenses come from National Science Foundation (NSF) for the period 1975-1986, and OECD ANBERD for years between 1987 and 2003. The latter source was integrated with NSF (based on SIC/NAICS categories) in presence of missing values. When both sources were uncompleted, missing values were linearly interpolated between available years. R&D expenditure is defined as the sum of federally- and privately-funded research expenses. Whenever they are not disclosed by NSF, publiclyfunded R&D expenses were estimated by first interpolating the ratio between total and privately-funded R&D expenses for missing years and, then, applying the resulting coefficient to the private research expension expressed at current prices were first converted into a constant price base using industry deflators for gross output (1995 dollars); then, the same procedure described above for patent counts, based on the perpetual inventory method and geometric depreciation, was applied to volume series for R&D expenditure.

Industry accounts data

Gross output at 1995 constant prices is taken from EUKLEMS Industry Accounts (release March 2008).

Panel unit roots and cointegration tests

The cointegration relationship described by eq. (2) is estimated through the Panel Ordinary Least Squares developed by Mark and Sul (2003), where the first-differences of two-period lags and leads of the explanatory variables are included as additional regressors to allow for the dynamic path around the long-run equilibrium and to account for endogeneity. Table A.1 reports the p-value associated with the tests of panel nonstationarity and panel cointegration for the data employed in the regressions reported in Table 2 of the main text. The former test has been proposed by Pesaran (2007) and checks the null hypothesis that all panel individuals contain unit roots against the alternative of heterogeneity. The long-run stationarity (cointegration) relationship between dependent variable and regressors is evaluated by means of the group mean variance ratio test, VR_G , of Westerlund (2005); the null hypothesis of this statistics is that there is no cointagration in the whole sample against an alternative of a non-vanishing fraction of panel individuals for which a cointegrated relationship exists.

LaUIt	ladie A.1 Illuusury classification	CIASSIIICALIOII			
	ISIC Rev. 3	Industry	OECD Technological	Label	Label Patent classes
			classification		(<i>Schmock</i> et al., 2003)
-		Food, beverage and tobacco	Low-Tech	LT	1-2
0		Textile, leather and footwear	Low-Tech	LT	3-5
З		Pulp, paper, printing and publishing	Low-Tech	LT	7-8
		Coke, refined petroleum and nuclear fuel	Medium- and Low-Tech	MLT	9
S	24	Chemicals and chemical products	Medium- and High-Tech	THM	10-12, 14-16
		Pharmaceuticals	High-Tech	HT	13
		Rubber and plastics	Medium- and Low-Tech	MLT	17
		Other non-metallic mineral	Medium- and Low-Tech	MLT	18
		Basic metals	Medium- and Low-Tech	MLT	19
		Fabricated metal products	Medium- and Low-Tech	MLT	20
		Machinery, nec	Medium- and High-Tech	MHT	21-27
		Office, accounting and computing machinery	High-Tech	HT	28
		Electrical machinery and apparatus, nec	Medium- and High-Tech	MHT	29-33
		Electronic valves and tubes	High-Tech	HT	34
		Communication equipment	High-Tech	HT	35-36
		Scientific instruments	High-Tech	HT	37-39
17	334-5	Other instruments	High-Tech	HT	40-41
18		Motor vehicles, trailers and semi-trailers	Medium- and High-Tech	MHT	42
19	35	Other transport equipment (incl. aerospace, etc.)	High-Tech	HT	43
20	20, 36-37	Wood, Furniture and Manufacturing nec	Low-Tech	LT	6, 44

Table A.1 Industry classification

	counts		Forwar	rd citati	$Ous \times C$	ounts	Backv	vard cit	ations ×	Counts	5	laims >	< Count	S
	(1) (2) (3) (4) (5) (6) (7) (8)	(4)	(5)	(9)	6	(8)	(6)	(10)	(11)	(9) (10) (11) (12)	(13)	(13) (14) (15) (16)	(15)	(16)
	² esaran (2007) unit roots test (H0=unit roots)	t (H0=ui	nit roots											
\mathbf{n}	0.99	0.86	1.00	1.00	1.00	1.00				0.82	0.68	0.53		0.85
0	1.00	0.96	1.00	1.00	1.00	0.96				0.96	1.00	1.00		0.96
0	0.49	0.41	0.99	1.00	0.49	0.41	0.99	1.00	0.49	0.41	0.99	1.00	0.49	0.41
90	ln A 1.00 0.96 1.00 1.00 -0.55	1.00	-0.55	1.00	1.00	1.00				1.00	0.06	0.16		0.46
ပ) cointegration test (H0=no cointegration)	tion test	(H0=no	cointeg	gration)									
33	VR_G 0.02 0.03 0.03 0.06 0.01 0.01 0.08 0.10	0.06	0.01	0.01	0.08	0.10	0.00	0.04	0.03	0.08 0.10 0.26 0.04	0.10	0.26	0.04	0.08

(p-values)
in tests
integration
3
and
unit roots and
Panel
ci.
Ą.
Table

References

- Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2001). The NBER citations data file: Lessons, insights and methodological tools. *NBER Working papers No.* 8498.
- (2005). Market value and patent citations. *Rand Journal of Economics*, 36(1): 16–38.
- Hall, B. H., & Mairesse, J. (1995). Exploring the relationship between R&D and productivity in French manufacturing firms. *Journal of Econometrics*, 65: 263–93.
- Mark, N., Sul, D., 2003. Cointegration vector estimation by Panel DOLS and long-run money demand. Oxf Bull Econ Stat 65, 655–680.
- OECD (2005). Science, Technology and Industry Scoreboard. Paris.
- Pesaran, M. H., (2007). A simple panel unit test in the presence of cross section dependence. J App Econom, 22: 65–312.
- Schmock, U., Laville, F., Patel, P., Frietsch, R. (2003). Linking Technology Areas to Industrial Sectors. Final Rapport for the European Commission, DG Research.
- Westerlund, J. (2005). New simple tests for panel cointegration. *Econom Rev*, 24: 297–316.