Skip to main content
Spotlight on available optical properties and models of nanofluids: A review
Renewable & Sustainable Energy Reviews (2015)

Optical characteristics besides unique thermo-physical properties of nanoparticles have encouraged researchers to use nanofluids in solar energy collectors or reservoirs as electromagnetic wave absorbing media. Recently, different analyses and approaches have been proposed by researchers. However, the appropriate electro-magnetic phenomenon of nanofluids is not established till date because of the complex dependence between nanoparticles and base fluids. In this work, optical properties of nanofluids are discussed on the basis of published data; mostly used models are presented along with their limitations and applications. (C) 2014 Elsevier Ltd. All rights reserved. Link to Full-Text Articles :

  • Nanofluids,
  • Optical properties,
  • Theoretical models,
  • Extinction,
  • Scattering,
  • Absorption,
  • SIZE,
Publication Date
March, 2015
Publisher Statement
ISI Document Delivery No.: CA4NF Times Cited: 0 Cited Reference Count: 55 Cited References: Al-Sherbini ASAM, 2004, COLLOID SURFACE A, V246, P61, DOI 10.1016/j.colsurfa.2004.06.038 Auffan M, 2009, NAT NANOTECHNOL, V4, P634, DOI 10.1038/nnano.2009.242 Bandarra EP, 2014, ENERG CONVERS MANAGE, V84, P261, DOI 10.1016/j.enconman.2014.04.009 Bieri NR, 2003, APPL PHYS LETT, V82, P3529, DOI 10.1063/1.1575502 Bohren C. F., 1983, ABSORPTION SCATTERIN Brioude A, 2005, J PHYS CHEM B, V109, P13138, DOI 10.1021/jp0507288 de Risi A, 2013, RENEW ENERG, V58, P134, DOI 10.1016/j.renene.2013.03.014 Evanoff DD, 2004, J PHYS CHEM B, V108, P13957, DOI 10.1021/jp0475640 Gan YA, 2012, ENERG FUEL, V26, P4224, DOI 10.1021/ef300493m Han D, 2011, NANOSCALE RES LETT, V6, P1 Hao E, 2004, J FLUORESC, V14, P331, DOI 10.1023/B:JOFL.0000031815.71450.74 Hari M, 2013, INT J THERM SCI, V64, P188, DOI 10.1016/j.ijthermalsci.2012.08.011 Hartland GV, 2011, CHEM REV, V111, P3858, DOI 10.1021/cr1002547 He QB, 2013, ENERG CONVERS MANAGE, V73, P150, DOI 10.1016/j.enconman.2013.04.019 HENGLEIN A, 1995, J PHYS CHEM-US, V99, P14129, DOI 10.1021/j100038a053 Hordy N, 2014, SOL ENERGY, V105, P82, DOI 10.1016/j.solener.2014.03.013 Jeon J, 2014, OPT EXPRESS, V22, pA1101, DOI 10.1364/OE.22.0A1101 Jimenez-Perez JL, 2011, INT J THERMOPHYS, V33, P69 JOHNSON PB, 1972, PHYS REV B, V6, P4370, DOI 10.1103/PhysRevB.6.4370 Kameya Y, 2011, SOL ENERGY, V85, P299, DOI 10.1016/j.solener.2010.11.021 Kelly KL, 2003, J PHYS CHEM B, V107, P668, DOI 10.1021/jp026731y Lamhot Y, 2009, PHS REV LETT, V103 Lee SH, 2013, INT J HEAT MASS TRAN, V67, P930, DOI 10.1016/j.ijheatmasstransfer.2013.08.094 Link S, 2000, INT REV PHYS CHEM, V19, P409, DOI 10.1080/01442350050034180 Link S, 1999, J PHYS CHEM B, V103, P4212, DOI 10.1021/jp984796o Luo ZY, 2014, INT J HEAT MASS TRAN, V75, P262, DOI 10.1016/j.ijheatmasstransfer.2014.03.072 Mahendia S, 2011, J PHYS D APPL PHYS, V44, DOI 10.1088/0022-3727/44/20/205105 Mahmoud MA, 2012, J AM CHEM SOC, V134, P6434, DOI 10.1021/ja300901e Mercatelli L, 2012, NANOSCALE RES LETT, V7, P5 Mercatelli L, 2011, J EUR OPT SOC-RAPID, P6 Mercatelli Luca, 2011, NANOSCALE RES LETT, V6, P9 Moreira LM, 2013, J THERM ANAL CALORIM, V114, P557, DOI 10.1007/s10973-013-3021-7 Noguez C, 2005, OPT MATER, V27, P1204, DOI 10.1016/j.optmat.2004.11.012 Ortega MA, 2008, J OPT A-PURE APPL OP, V10, DOI 10.1088/1464-4258/10/10/104024 Ortega MA, 2008, AIP CONF PROC, V992, P1172 Otanicar T., 2013, J NANOPART RES, V15, P1 Otanicar TP, 2010, J RENEWABLE SUSTAINA, V2 Otanicar TP, 2009, SOL ENERGY, V83, P969, DOI 10.1016/j.solener.2008.12.009 Perez-Juste J, 2004, ADV FUNCT MATER, V14, P571, DOI 10.1002/adfm.200305068 Prasher RS, 2005, HEAT TRANSF DIV ASME, V376-2, P739 PURCELL EM, 1973, ASTROPHYS J, V186, P705, DOI 10.1086/152538 Rodriguez L, 2007, OPT COMMUN, V277, P181, DOI 10.1016/j.optcom.2007.04.034 Saidur R, 2012, INT J HEAT MASS TRAN Sani E, 2011, SOL ENERG MAT SOL C, V95, P2994, DOI 10.1016/j.solmat.2011.06.011 Shahriari E, 2013, J EUR OPT SOC-RAPID, V8, DOI 10.2971/jeos.2013.13026 Siegel R., 1992, THERMAL RAD HEAT TRA Taylor R, 2011, THERMAL ENERGY CONVE Taylor R.A., 2011, NANOSCALE RES LETT, V6, P1 Taylor RA, 2011, J RENEWABLE SUSTAINA, V3 Tilaki RM, 2007, APPL PHYS A-MATER, V88, P415, DOI 10.1007/s00339-007-4000-2 Tsierkezos NG, 1998, J CHEM ENG DATA, V43, P989, DOI 10.1021/je9800914 Yousefi T, 2012, EXP THERM FLUID SCI, V39, P207, DOI 10.1016/j.expthermflusci.2012.01.025 Yousefi T, 2012, RENEW ENERG, V39, P293, DOI 10.1016/j.renene.2011.08.056 Yousefi T, 2012, SOL ENERGY, V86, P771, DOI 10.1016/j.solener.2011.12.003 Zhu QZ, 2013, INT J THERMOPHYS, V34, P2307, DOI 10.1007/s10765-012-1208-y Hossain, Mohammad Sajid Saidur, R. Sabri, Mohd Faizul Mohd Said, Z. Hassani, Samir MOHD SABRI, MOHD FAIZUL/B-9084-2010 MOHD SABRI, MOHD FAIZUL/0000-0001-8096-2709 Ministry of Higher Education (MoHE), Malaysia [UM-MOHE UM.C/HIR/MOHE/ENG/40] The authors would like to acknowledge the financial support from the Ministry of Higher Education (MoHE), Malaysia, through the UM High Impact Research Grant "UM-MOHE UM.C/HIR/MOHE/ENG/40." They also extend their acknowledgment to the Department of Mechanical Engineering, University of Malaya, for supporting them with the research facilities for this work. 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD RENEW SUST ENERG REV
Citation Information
"Spotlight on available optical properties and models of nanofluids: A review" Renewable & Sustainable Energy Reviews Vol. 43 (2015)
Available at: