Skip to main content
Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review
Renewable and Sustainable Energy Reviews (2015)

Thermocatalytic decomposition of methane (TCD) is a fully green single step technology for producing hydrogen and nano-carbon. This review studying all development in laboratory-scale research on TCD, especially the recent advances like co-feeding effect and catalyst regeneration for augmenting the productivity of the whole process. Although a great success on the laboratory-scale has been fulfilled, TCD for greenhouse gas (GHG) free hydrogen production is still in its infancy. The need for commercialization of TCD is greater than ever in the present situation of huge GHG emission. TCD usually examined over various kind of catalysts, such as monometallic, bimetallic, trimetallic, combination of metal-metal oxide, carbonaceous and/or metal doped carbon catalysts. Deactivation of catalysts is the prime drawback found in TCD process. Catalyst regeneration and co-feeding of methane with other hydrocarbon are the two solutions put forwarded in accordance to overcome deactivation hurdle. Higher amount of co-feed hydrocarbon in situ produce more amount of highly active carbonaceous deposits which assist further methane decomposition to produce additional hydrogen to a great extent. The methane conversion rate increases with increase in the temperature and decreases with the flow rate in the co-feeding process in a similar manner as observed in normal TCD. The presence of co-components in the post-reaction stream is a key challenge tackled in the co-feeding and regeneration. Hence, this review hypothesizing the integration of hydrogen separation membrane in to methane decomposition reactor for online hydrogen separation. (C) 2014 Elsevier Ltd. All rights reserved. Link to Full-Text Articles :

  • Catalytic methane decomposition,
  • Hydrogen production,
  • Metal-carbon,
  • catalysts,
  • Methane co-feeding,
  • Hydrogen separation membrane,
Publication Date
April, 2015
Publisher Statement
ISI Document Delivery No.: CD8DB Times Cited: 0 Cited Reference Count: 208 Cited References: Abbas HF, 2010, INT J HYDROGEN ENERG, V35, P141, DOI 10.1016/j.ijhydene.2009.10.072 Abbas HF, 2009, INT J HYDROGEN ENERG, V34, P6231, DOI 10.1016/j.ijhydene.2009.05.143 Abbas HF, 2011, INT J HYDROGEN ENERG, V36, P8985, DOI 10.1016/j.ijhydene.2011.05.005 Abbas HF, 2009, INT J HYDROGEN ENERG, V34, P8034, DOI 10.1016/j.ijhydene.2009.08.014 Abbas HF, 2010, INT J HYDROGEN ENERG, V35, P12268, DOI 10.1016/j.ijhydene.2010.08.036 Abbas HF, 2010, APPL CATAL A-GEN, V388, P232, DOI 10.1016/j.apcata.2010.08.057 Abbas HF, 2010, INT J HYDROGEN ENERG, V35, P1160, DOI 10.1016/j.ijhydene.2009.11.036 Abbott HL, 2008, J CATAL, V254, P27, DOI 10.1016/j.jcat.2007.11.013 Acha E, 2013, INT J HYDROGEN ENERG, V38, P7659, DOI 10.1016/j.ijhydene.2012.11.010 Adamska A, 2010, ENERG FUEL, V24, P3307, DOI 10.1021/ef9014179 Adhikari S, 2006, IND ENG CHEM RES, V45, P875, DOI 10.1021/ie050644l Aiello R, 2000, APPL CATAL A-GEN, V192, P227, DOI 10.1016/S0926-860X(99)00345-2 Amin AM, 2012, INT J HYDROGEN ENERG, V37, P9038, DOI 10.1016/j.ijhydene.2012.02.001 Amin AM, 2012, INT J HYDROGEN ENERG, V37, P10690, DOI 10.1016/j.ijhydene.2012.04.082 Amin AM, 2011, INT J HYDROGEN ENERG, V36, P2904, DOI 10.1016/j.ijhydene.2010.11.035 Amin MH, 2012, APPL CATAL B-ENVIRON, V119, P217, DOI 10.1016/j.apcatb.2012.02.039 Ammendola P, 2007, 3 EUR COMB M ECM 200 Ammendola P, 2008, COMBUST SCI TECHNOL, V180, P869, DOI 10.1080/00102200801894174 Ammendola P, 2010, EXP THERM FLUID SCI, V34, P262, DOI 10.1016/j.expthermflusci.2009.10.020 [Anonymous], 2012, STAT REV WORLD EN [Anonymous], 1975, STEAM REFORMING CATA Asai K, 2008, CHEM ENG SCI, V63, P5083, DOI 10.1016/j.ces.2007.08.012 Ashok J, 2008, CATAL LETT, V121, P283, DOI 10.1007/s10562-007-9334-z Ashok J, 2007, CATAL LETT, V118, P139, DOI 10.1007/s10562-007-9170-1 Bachiller-Baeza B, 2013, APPL CATAL B-ENVIRON, V129, P450, DOI 10.1016/j.apcatb.2012.09.052 Bai ZQ, 2007, INT J HYDROGEN ENERG, V32, P32, DOI 10.1016/j.ijhydene.2006.06.030 BAKER RTK, 1972, J CATAL, V26, P51, DOI 10.1016/0021-9517(72)90032-2 Balakrishnan M, 2009, GREEN CHEM, V11, P42, DOI 10.1039/b815834g Balat M, 2009, INT J HYDROGEN ENERG, V34, P3589, DOI 10.1016/j.ijhydene.2009.02.067 BARTHOLOMEW CH, 1982, CATAL REV, V24, P67, DOI 10.1080/03602458208079650 Bat Z, 2012, ENERG SOURCE PART A, V34, P1145 Borghei M, 2010, INT J HYDROGEN ENERG, V35, P9479, DOI 10.1016/j.ijhydene.2010.05.072 Borgognoni F, 2011, INT J HYDROGEN ENERG, V36, P7550, DOI 10.1016/j.ijhydene.2011.03.120 Botas JA, 2010, INT J HYDROGEN ENERG, V35, P9788, DOI 10.1016/j.ijhydene.2009.10.031 Brentner LB, 2010, ENVIRON SCI TECHNOL, V44, P2243, DOI 10.1021/es9030613 Chai SP, 2006, CHEM PHYS LETT, V426, P345, DOI 10.1016/j.cplett.2006.05.026 Chai SP, 2007, APPL CATAL A-GEN, V326, P173, DOI 10.1016/j.apcata.2007.04.020 Chambers A, 1998, J PHYS CHEM B, V102, P2251, DOI 10.1021/jp973462g Chaubey R, 2013, RENEW SUST ENERG REV, V23, P443, DOI 10.1016/j.rser.2013.02.019 Chen D, 2005, J CATAL, V229, P82, DOI 10.1016/j.jcat.2004.10.017 Chen JL, 2009, INT J HYDROGEN ENERG, V34, P9730, DOI 10.1016/j.ijhydene.2009.10.030 Chen W, 2013, APPL CATAL B-ENVIRON, V136, P260, DOI 10.1016/j.apcatb.2013.01.044 Chesnokov VV, 2009, INT J HYDROGEN ENERG, V34, P2979 Choudhary VR, 2001, J CATAL, V198, P136, DOI 10.1006/jcat.2000.3135 Cunha AF, 2009, INT J HYDROGEN ENERG, V34, P4763, DOI 10.1016/j.ijhydene.2009.03.040 Cunha AF, 2009, FUEL PROCESS TECHNOL, V90, P1234, DOI 10.1016/j.fuproc.2009.06.004 de la Casa-Lillo MA, 2002, CARBON, V40, P2489, DOI 10.1016/S0008-6223(02)00164-1 de Lucas A, 2005, IND ENG CHEM RES, V44, P8225, DOI 10.1021/ie058027k Dominguez A, 2007, INT J HYDROGEN ENERG, V32, P4792, DOI 10.1016/j.ijhydene.2007.07.041 Dufour A, 2009, APPL CATAL A-GEN, V360, P120, DOI 10.1016/j.apcata.2009.02.033 Dufour A, 2008, APPL CATAL A-GEN, V346, P164, DOI 10.1016/j.apcata.2008.05.023 Dupuis AC, 2005, PROG MATER SCI, V50, P929, DOI 10.1016/j.pmatsci.2005.04.003 EDWARDS JH, 1995, FUEL PROCESS TECHNOL, V42, P269, DOI 10.1016/0378-3820(94)00105-3 Ermakova MA, 2002, CATAL TODAY, V77, P225, DOI 10.1016/S0920-5861(02)00248-1 Ermakova MA, 2000, APPL CATAL A-GEN, V201, P61, DOI 10.1016/S0926-860X(00)00433-6 Ermakova MA, 2001, J CATAL, V201, P183, DOI 10.1006/jcat.2001.3243 Fidalgo B, 2012, INT J HYDROGEN ENERG, V37, P14187, DOI 10.1016/j.ijhydene.2012.07.090 Fidalgo B, 2008, INT J HYDROGEN ENERG, V33, P4337, DOI 10.1016/j.ijhydene.2008.05.056 Figueiredo JL, 1982, PROGR CATALYST DEACT, P45 Figueiredo JL, 2010, INT J HYDROGEN ENERG, V35, P9795, DOI 10.1016/j.ijhydene.2009.12.071 Frusteri F, 2011, CATAL TODAY, V171, P60, DOI 10.1016/j.cattod.2011.03.016 Fukada S, 2004, J NUCL MATER, V329, P1365, DOI 10.1016/j.jnucmat.2004.04.199 Gallego GS, 2010, CATAL TODAY, V149, P365, DOI 10.1016/j.cattod.2009.06.004 Gatica JM, 2013, APPL CATAL A-GEN, V458, P21, DOI 10.1016/j.apcata.2013.03.016 Gonzalez AR, 2013, APPL SURF SCI, V280, P876, DOI 10.1016/j.apsusc.2013.05.082 Guevara JC, 2010, INT J HYDROGEN ENERG, V35, P3509, DOI 10.1016/j.ijhydene.2010.01.068 Guil-Lopez R, 2006, CATAL TODAY, V116, P289, DOI 10.1016/j.cattod.2006.05.078 Gull-Lopez R, 2011, APPL CATAL A-GEN, V396, P40 Hornes A, 2012, APPL CATAL B-ENVIRON, V111, P96, DOI 10.1016/j.apcatb.2011.09.022 Hussain ST, 2008, CATAL COMMUN, V9, P2048, DOI 10.1016/j.catcom.2008.03.050 Hussain ST, 2008, J NAT GAS CHEM, V17, P374 Hussain T, 2011, J ANAL APPL PYROL, V90, P106, DOI 10.1016/j.jaap.2010.10.012 IEA, 2012, WORLD EN OUTL IPCC, 2007, 4 IPCC Ishihara T, 2002, IND ENG CHEM RES, V41, P3365, DOI 10.1021/ie010801q ISHIHARA T, 1995, CHEM LETT, P93, DOI 10.1246/cl.1995.93 Italiano G, 2010, INT J HYDROGEN ENERG, V35, P11568, DOI 10.1016/j.ijhydene.2010.05.012 Jana P, 2012, INT J HYDROGEN ENERG, V37, P7034, DOI 10.1016/j.ijhydene.2011.11.067 Jana P, 2010, INT J HYDROGEN ENERG, V35, P10285, DOI 10.1016/j.ijhydene.2010.07.125 Jang HT, 2007, KOREAN J CHEM ENG, V24, P374, DOI 10.1007/s11814-007-5037-9 Jin L, 2013, INT J HYDROGEN ENERG, V38, P1 Juntgen H, 1986, FUEL, V65, P1436 Khaselev O, 1998, SCIENCE, V280, P425, DOI 10.1126/science.280.5362.425 Kim MH, 2004, INT J HYDROGEN ENERG, V29, P187, DOI 10.1016/S0360-3199(03)00111-3 Koc R, 2008, TURK J CHEM, V32, P157 Kodama T, 2003, PROG ENERG COMBUST, V29, P567, DOI 10.1016/S0360-1285(03)00059-5 Konieczny A, 2008, INT J HYDROGEN ENERG, V33, P264, DOI 10.1016/j.ijhydene.2007.07.054 Krzyzynski S, 2008, INT J HYDROGEN ENERG, V33, P6172, DOI 10.1016/j.ijhydene.2008.07.091 Kvande I, 2008, J CATAL, V256, P204, DOI 10.1016/j.jcat.2008.03.015 Lazaro MJ, 2008, INT J HYDROGEN ENERG, V33, P4104, DOI 10.1016/j.ijhydene.2008.05.072 Lazaro MJ, 2008, INT J HYDROGEN ENERG, V33, P3320, DOI 10.1016/j.ijhydene.2008.03.050 Lazaro MJ, 2007, J ANAL APPL PYROL, V78, P301, DOI 10.1016/j.jaap.2006.08.007 Lazaro MJ, 2010, ENERG FUEL, V24, P3340, DOI 10.1021/ef901504x Lee EK, 2004, CARBON, V42, P2641, DOI 10.1016/j.carbon.2004.06.003 Lee KK, 2004, CATAL TODAY, V93-5, P81, DOI 10.1016/j.cattod.2004.06.080 Lee K-Y, 2012, FULLER NANOTUB CARBO, V21, P158 Lee SY, 2008, CARBON, V46, P342, DOI 10.1016/j.carbon.2007.11.049 Li H, 2010, CARBON, V48, P4547, DOI 10.1016/j.carbon.2010.08.038 Li J, 2008, APPL CATAL A-GEN, V349, P116, DOI 10.1016/j.apcata.2008.07.011 Li YD, 2011, CATAL TODAY, V162, P1, DOI 10.1016/j.cattod.2010.12.042 Li YD, 2000, ENERG FUEL, V14, P1188, DOI 10.1021/ef0000781 Li Z, 2008, J PHYS CHEM C, V112, P12201, DOI 10.1021/jp8023556 Liu TF, 2008, FUEL, V87, P460, DOI 10.1016/j.fuel.2007.06.019 Lua AC, 2013, APPL CATAL B-ENVIRON, V132, P469, DOI 10.1016/j.apcatb.2012.12.014 Malaika A, 2009, INT J HYDROGEN ENERG, V34, P2600, DOI 10.1016/j.ijhydene.2009.01.052 Malaika A, 2010, INT J HYDROGEN ENERG, V35, P7470, DOI 10.1016/j.ijhydene.2010.05.026 Malaika A, 2010, INT J HYDROGEN ENERG, V35, P10302, DOI 10.1016/j.ijhydene.2010.07.176 Maneerung T, 2011, CATAL TODAY, V171, P24, DOI 10.1016/j.cattod.2011.03.080 Matsuka M, 2013, INT J HYDROGEN ENERG, V38, P6673, DOI 10.1016/j.ijhydene.2013.03.121 MCALLISTER P, 1992, CARBON, V30, P189, DOI 10.1016/0008-6223(92)90079-C Moliner R, 2005, INT J HYDROGEN ENERG, V30, P293, DOI 10.1016/j.ijhydene.2004.03.035 Morales-Torres S, 2011, APPL CATAL B-ENVIRON, V105, P86, DOI 10.1016/j.apcatb.2011.03.038 Muradov N, 2001, CATAL COMMUN, V2, P89, DOI 10.1016/S1566-7367(01)00013-9 Muradov N, 2005, INT J HYDROGEN ENERG, V30, P1149, DOI 10.1016/j.ijhydene.2005.04.005 Muradov N, 2005, CATAL TODAY, V102, P225, DOI 10.1016/j.cattod.2005.02.018 Muradov N, 2006, CATAL TODAY, V116, P281, DOI 10.1016/j.cattod.2006.05.070 Muradov NZ, 1998, ENERG FUEL, V12, P41, DOI 10.1021/ef9701145 Uddin MN, 2014, ENERG CONVERS MANAGE, V87, P796, DOI 10.1016/j.enconman.2014.07.072 Nasir Uddin Md, 2013, Renewable and Sustainable Energy Reviews, V27, DOI 10.1016/j.rser.2013.06.031 Navarro RM, 2009, ENERG ENVIRON SCI, V2, P35, DOI 10.1039/b808138g Ni M, 2007, RENEW SUST ENERG REV, V11, P401, DOI 10.1016/j.rser.2005.01.009 Nowotny J, 2005, INT J HYDROGEN ENERG, V30, P521, DOI 10.1016/j.ijhydene.2004.06.012 Nuemberg GDB, 2012, J POWER SOURCES, V208, P409 Nuernberg GD, 2011, CATAL TODAY, V176, P465, DOI 10.1016/j.cattod.2010.10.053 O'Byrne JP, 2010, J PHYS CHEM C, V114, P8115, DOI 10.1021/jp909309t Olivier Jos GJ, 2012, TRENDS GLOBAL CO2 EM Otsuka K, 2003, CARBON, V41, P223, DOI 10.1016/S0008-6223(02)00308-1 Otsuka K, 2004, APPL CATAL A-GEN, V273, P113, DOI 10.1016/j.apcata.2004.06.021 Peharz G, 2007, INT J HYDROGEN ENERG, V32, P3248, DOI 10.1016/j.ijhydene.2007.04.036 Pinilla IL, 2011, FUEL PROCESS TECHNOL, V92, P1480 Pinilla JL, 2007, J POWER SOURCES, V169, P103, DOI 10.1016/j.jpowsour.2007.01.045 Pinilla JL, 2011, INT J HYDROGEN ENERG, V36, P7832, DOI 10.1016/j.ijhydene.2011.01.184 Pinilla JL, 2010, INT J HYDROGEN ENERG, V35, P9801, DOI 10.1016/j.ijhydene.2009.10.008 Pinilla JL, 2008, INT J HYDROGEN ENERG, V33, P2515, DOI 10.1016/j.ijhydene.2008.02.041 Pinilla JL, 2011, FUEL, V90, P2245, DOI 10.1016/j.fuel.2011.02.014 Pinilla JL, 2009, J POWER SOURCES, V192, P100, DOI 10.1016/j.jpowsour.2008.12.074 Pino L, 2011, APPL CATAL B-ENVIRON, V104, P64, DOI 10.1016/j.apcatb.2011.02.027 Prasad JS, 2010, INT J HYDROGEN ENERG, V35, P10977, DOI 10.1016/j.ijhydene.2010.07.021 Punnoose A, 2003, FUEL PROCESS TECHNOL, V83, P263, DOI 10.1016/S0378-3820(03)00074-2 Qian WZ, 2004, APPL CATAL A-GEN, V258, P121, DOI 10.1016/j.apcata.2003.08.017 Rahman MS, 2006, TOP CATAL, V37, P137, DOI 10.1007/s11244-006-0015-8 Rechnia P, 2012, INT J HYDROGEN ENERG, V37, P14178, DOI 10.1016/j.ijhydene.2012.07.060 Rechnia P, 2012, INT J HYDROGEN ENERG, V37, P7512, DOI 10.1016/j.ijhydene.2012.02.014 Roine A, 2002, FISC CHEM 5 11 ROSTRUPN.JR, 1974, J CATAL, V33, P184, DOI 10.1016/0021-9517(74)90263-2 Ryi SK, 2009, J MEMBRANE SCI, V339, P189, DOI 10.1016/j.memsci.2009.04.047 Ryu BH, 2007, CATAL TODAY, V123, P303, DOI 10.1016/j.cattod.2007.02.001 Salmones J, 2009, CATAL TODAY, V148, P134, DOI 10.1016/j.cattod.2009.03.005 Sarada Prasad J, 2011, INT J HYDROGEN ENERG, V36, P11702 Saraswat SK, 2013, J NAT GAS SCI ENG, V13, P52, DOI 10.1016/j.jngse.2013.04.001 Saraswat SK, 2011, INT J HYDROGEN ENERG, V36, P13352, DOI 10.1016/j.ijhydene.2011.07.102 Serrano DP, 2010, FUEL, V89, P1241, DOI 10.1016/j.fuel.2009.11.030 Serrano DP, 2013, INT J HYDROGEN ENERG, V38, P5671, DOI 10.1016/j.ijhydene.2013.02.112 Serrano DP, 2008, CHEM COMMUN, P6585, DOI 10.1039/b811800k Serrano DP, 2009, INT J HYDROGEN ENERG, V34, P4488, DOI 10.1016/j.ijhydene.2008.07.079 Serrano DP, 2013, J MATER CHEM A, V1, P12016, DOI 10.1039/c3ta12453c Shah N, 2004, ENERG FUEL, V18, P727, DOI 10.1021/ef034100c Shah N, 2003, FUEL PROCESS TECHNOL, V83, P163, DOI 10.1016/S0378-3820(03)00064-X Shah N, 2001, ENERG FUEL, V15, P1528, DOI 10.1021/ef0101964 Shigarov AB, 2012, THEOR FOUND CHEM EN+, V46, P97, DOI 10.1134/S004057951202011X Sircar S, 2000, SEPAR SCI TECHNOL, V35, P667, DOI 10.1081/SS-100100183 Snoeck JW, 1997, J CATAL, V169, P250, DOI 10.1006/jcat.1997.1635 Stephens-Romero S, 2009, ENVIRON SCI TECHNOL, V43, P9022, DOI 10.1021/es901515y SueIves I, 2006, CATAL TODAY, V116, P271 SueIves I, 2007, INT J HYDROGEN ENERG, V32, P3320 Suelves I, 2009, J POWER SOURCES, V192, P35, DOI 10.1016/j.jpowsour.2008.11.096 Suelves I, 2008, CHEM ENG J, V140, P432, DOI 10.1016/j.cej.2007.11.014 Sun LL, 2010, INT J HYDROGEN ENERG, V35, P2958, DOI 10.1016/j.ijhydene.2009.05.069 Sun ZQ, 2007, ENERG FUEL, V21, P1601, DOI 10.1021/ef060616v Takenaka S, 2001, APPL CATAL A-GEN, V217, P101, DOI 10.1016/S0926-860X(01)00593-2 Takenaka S, 2004, J PHYS CHEM B, V108, P11464, DOI 10.1021/jp048827t Takenaka S, 2004, J CATAL, V222, P520, DOI 10.1016/j.jcat.2003.11.017 Tang LG, 2010, CATAL COMMUN, V11, P1215, DOI 10.1016/j.catcom.2010.07.004 Tapia-Parada K, 2013, FUEL, V110, P70, DOI 10.1016/j.fuel.2012.11.022 Tibbetts GG, 2001, CARBON, V39, P2291, DOI 10.1016/S0008-6223(01)00051-3 Toebes ML, 2002, CATAL TODAY, V76, P33, DOI 10.1016/S0920-5861(02)00209-2 Torres D, 2012, J NAT GAS CHEM, V21, P367, DOI 10.1016/S1003-9953(11)60378-2 TRIMM DL, 1977, CATAL REV, V16, P155, DOI 10.1080/03602457708079636 Tsuru T, 2004, AICHE J, V50, P2794, DOI 10.1002/aic.10215 UEMIYA S, 1991, J MEMBRANE SCI, V56, P315, DOI 10.1016/S0376-7388(00)83041-0 Ueno Y, 2007, ENVIRON SCI TECHNOL, V41, P1413, DOI 10.1021/es062127f Venugopal A, 2007, INT J HYDROGEN ENERG, V32, P1782, DOI 10.1016/j.ijhydene.2007.01.007 Villacampa JI, 2003, APPL CATAL A-GEN, V252, P363, DOI 10.1016/S0926-860X(03)00492-7 Wang HY, 2014, CHEM ENG J, V243, P79, DOI 10.1016/j.cej.2013.12.100 Wang HY, 2012, HEAT TRANSFER ENG, P896 Wang SB, 2008, ENVIRON SCI TECHNOL, V42, P7055, DOI 10.1021/es801312m Wang WH, 2012, INT J HYDROGEN ENERG, V37, P9058, DOI 10.1016/j.ijhydene.2012.03.003 Wei L, 2011, FUEL, V90, P3473, DOI 10.1016/j.fuel.2011.06.053 Westermann P, 2007, INT J HYDROGEN ENERG, V32, P4135, DOI 10.1016/j.ijhydene.2007.06.018 Xiong J, 2012, INT J HYDROGEN ENERG, V37, P12307, DOI 10.1016/j.ijhydene.2012.06.068 Yan ZF, 1998, ENERG FUEL, V12, P1114, DOI 10.1021/ef980105b Yu J, 2013, IND ENG CHEM RES, V53, P819 Zapata B, 2010, INT J HYDROGEN ENERG, V35, P12091, DOI 10.1016/j.ijhydene.2009.09.072 Zavarukhin SG, 2004, APPL CATAL A-GEN, V272, P219, DOI 10.1016/j.apcata.2004.05.044 Zein SHS, 2004, IND ENG CHEM RES, V43, P4864, DOI 10.1021/ie034208f Zhang JB, 2012, FUEL, V96, P462, DOI 10.1016/j.fuel.2011.12.075 Zhang JB, 2012, CARBON, V50, P952, DOI 10.1016/j.carbon.2011.09.058 Zhang JB, 2011, INT J HYDROGEN ENERG, V36, P8978, DOI 10.1016/j.ijhydene.2011.04.205 Zhang JB, 2013, INT J HYDROGEN ENERG, V38, P3937, DOI 10.1016/j.ijhydene.2013.01.105 Zhang JB, 2013, INT J HYDROGEN ENERG, V38, P8732, DOI 10.1016/j.ijhydene.2013.05.012 Zhang TJ, 1998, APPL CATAL A-GEN, V167, P161, DOI 10.1016/S0926-860X(97)00143-9 Zhang W, 2011, J NAT GAS CHEM, V20, P339, DOI 10.1016/S1003-9953(10)60205-8 Zhang W, 2009, J PHYS CHEM A, V114, P3818 Zhang Y, 2004, CATAL LETT, V95, P7, DOI 10.1023/B:CATL.0000023714.69741.1d Zhang YW, 2008, INT J HYDROGEN ENERG, V33, P3311, DOI 10.1016/j.ijhydene.2008.04.015 Zhu XL, 2008, APPL CATAL B-ENVIRON, V81, P132, DOI 10.1016/j.apcatb.2007.11.042 ZHUANG QL, 1994, ENERG FUEL, V8, P714, DOI 10.1021/ef00045a028 Zuttel A, 2004, NATURWISSENSCHAFTEN, V91, P157 Ashik, U. P. M. Daud, W. M. A. Wan Abbas, Hazzim F. University of Malaya, Malaysia [UM.C/HIR/MOHE/ENG/11] The authors gratefully acknowledge financial support from the Postgraduate Research Fund (UM.C/HIR/MOHE/ENG/11), University of Malaya, Malaysia. 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD RENEW SUST ENERG REV
Citation Information
"Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review" Renewable and Sustainable Energy Reviews Vol. 44 (2015)
Available at: