Skip to main content
Article
ISI Document Delivery No.: CE6QQ Times Cited: 0 Cited Reference Count: 44 Cited References: Adalberth K, 1997, BUILD ENVIRON, V32, P321, DOI 10.1016/S0360-1323(96)00069-8 [Anonymous], 2005, E38405 ASTM, P1 Arena AP, 2003, BUILD ENVIRON, V38, P359, DOI 10.1016/S0360-1323(02)00056-2 Asif M, 2007, BUILD ENVIRON, V42, P1391, DOI 10.1016/j.buildenv.2005.11.023 Attia S, 2011, STATE ART EXISTING E Bare JC, 2000, INT J LIFE CYCLE ASS, V5, P319, DOI 10.1007/BF02978665 Blengini GA, 2010, ENERG BUILDINGS, V42, P869, DOI 10.1016/j.enbuild.2009.12.009 Blengini GA, 2010, INT J LIFE CYCLE ASS, V15, P652, DOI 10.1007/s11367-010-0190-5 Bribian IZ, 2009, BUILD ENVIRON, V44, P2510, DOI 10.1016/j.buildenv.2009.05.001 Buchan RD, 2003, ESTIMATING BUILDERS Cole RJ, 1996, BUILD ENVIRON, V31, P307, DOI 10.1016/0360-1323(96)00017-0 Cole RJ, 1999, BUILD ENVIRON, V34, P335 Ding GKC, 2007, BUILD RES INF, V35, P487, DOI 10.1080/09613210601116408 Fava J, 2009, J IND ECOL, V13, P491, DOI 10.1111/j.1530-9290.2009.00150.x Fay R, 2000, BUILD RES INF, V28, P31 Goedkoop M, 2010, INTRO TO LCA Guinee JB., 2002, HDB LIFE CYCLE ASSES, P692 Han G, 2011, LIFE CYCLE ASSESSMEN Huijbregts MAJ, 2003, ENVIRON SCI TECHNOL, V37, P2600, DOI 10.1021/es020971+ ISO, 2006, 140402006 ISO, V2006 ISO, 2006, 14044 ISO, V2006 Iyer-Raniga U, 2012, BUILD ENVIRON, V47, P138, DOI 10.1016/j.buildenv.2011.08.001 Khasreen Mohamad Monkiz, 2009, Sustainability, V1, DOI 10.3390/su1030674 Kofoworola OF, 2009, ENERG BUILDINGS, V41, P1076, DOI 10.1016/j.enbuild.2009.06.002 Lopez-Mesa B, 2009, BUILD ENVIRON, V44, P699, DOI 10.1016/j.buildenv.2008.05.017 Mithraratne N, 2004, BUILD ENVIRON, V39, P483, DOI 10.1016/j.buildenv.2003.09.008 Monahan J, 2011, ENERG BUILDINGS, V43, P179, DOI 10.1016/j.enbuild.2010.09.005 Ochsendorf J, 2011, METHODS IMPACTS OPPO Ortiz O, 2009, CONSTR BUILD MATER, V23, P28, DOI 10.1016/j.conbuildmat.2007.11.012 Ortiz-Rodriguez O, 2010, SCI TOTAL ENVIRON, V408, P2435, DOI 10.1016/j.scitotenv.2010.02.021 Ove Arup and Partners Hong Kong Ltd, 2007, INTR LIF CYCL EN ASS Peuportier BLP, 2001, ENERG BUILDINGS, V33, P443, DOI 10.1016/S0378-7788(00)00101-8 Rebitzer G, 2004, ENVIRON INT, V30, P701, DOI 10.1016/j.envint.2003.11.005 Rossi B, 2012, BUILD ENVIRON, V51, P395, DOI 10.1016/j.buildenv.2011.11.017 Sartori I, 2007, ENERG BUILDINGS, V39, P249, DOI 10.1016/j.enbuild.2006.07.001 Scheuer C, 2003, ENERG BUILDINGS, V35, P1049, DOI 10.1016/S0378-7788(03)00066-5 Singh A, 2010, J MONETARY ECON, V57, P729, DOI 10.1016/j.jmoneco.2010.05.012 Suh S, 2007, INT J LIFE CYCLE ASS, V12, P351, DOI 10.1065/lca2007.08.358 Thiers S, 2012, BUILD ENVIRON, V51, P276, DOI 10.1016/j.buildenv.2011.11.018 Thormark C, 2002, BUILD ENVIRON, V37, P429, DOI 10.1016/S0360-1323(01)00033-6 Utama A, 2008, ENERG BUILDINGS, V40, P1911, DOI 10.1016/j.enbuild.2008.04.017 Utama A, 2009, ENERG BUILDINGS, V41, P1263, DOI 10.1016/j.enbuild.2009.07.025 Van Ooteghem K, 2012, BUILD ENVIRON, V49, P212, DOI 10.1016/j.buildenv.2011.09.028 Wu JG, 2010, ENVIRON MANAGE, V46, P610, DOI 10.1007/s00267-010-9497-z Abd Rashid, Ahmad Faiz Yusoff, Sumiani 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD RENEW SUST ENERG REV
Energy Conversion and Management (2015)
Abstract

Thermal energy storage as sensible or latent heat is an efficient way to conserve the waste heat and excess energy available such as solar radiation. Storage of latent heat using organic phase change materials (PCMs) offers greater energy storage density over a marginal melting and freezing temperature difference in comparison to inorganic materials. These favorable characteristics of organic PCMs make them suitable in a wide range of applications. These materials and their eutectic mixtures have been successfully tested and implemented in many domestic and commercial applications such as, building, electronic devices, refrigeration and air-conditioning, solar air/water heating, textiles, automobiles, food, and space industries. This review focuses on three aspects: the materials, encapsulation and applications of organic PCMs, and provides an insight on the recent developments in applications of these materials. Organic PCMs have inherent characteristic of low thermal conductivity (0.15-0.35 W/m K), hence, a larger surface area is required to enhance the heat transfer rate. Therefore, attention is also given to the thermal conductivity enhancement of the materials, which helps to keep the area of the system to a minimum. Besides, various available techniques for material characterization have also been discussed. It has been found that a wide range of the applications of organic PCMs in buildings and other low and medium temperature solar energy applications are in abundant use but these materials are not yet popular among space applications and virtual data storage media. In addition, it has also been observed that because of the low melting point of organic PCMs, they have not yet been explored for high temperature applications such as in power plants. (C) 2015 Elsevier Ltd. All rights reserved. Link to Full-Text Articles : http://www.sciencedirect.com/science/article/pii/S0196890415000989 http://ac.els-cdn.com/S0196890415000989/1-s2.0-S0196890415000989-main.pdf?_tid=f5f22994-f3a2-11e4-aba1-00000aacb360&acdnat=1430884376_06a9649952414b83f2ef7e762b3eff44

Keywords
  • thermal energy storage,
  • latent heat,
  • organic phase change materials,
  • encapsulation,
  • thermal conductivity enhancement,
  • latent-heat storage,
  • change materials pcms,
  • fatty-acid esters,
  • solar water-heater,
  • paraffin/expanded graphite composite,
  • suspension-like polymerization,
  • low-density polyethylene,
  • polyurethane rigid foam,
  • in-situ polymerization,
  • shape-stabilized pcm
Publication Date
May 1, 2015
Publisher Statement
Ce9my Times Cited:0 Cited References Count:392
Citation Information
"ISI Document Delivery No.: CE6QQ Times Cited: 0 Cited Reference Count: 44 Cited References: Adalberth K, 1997, BUILD ENVIRON, V32, P321, DOI 10.1016/S0360-1323(96)00069-8 [Anonymous], 2005, E38405 ASTM, P1 Arena AP, 2003, BUILD ENVIRON, V38, P359, DOI 10.1016/S0360-1323(02)00056-2 Asif M, 2007, BUILD ENVIRON, V42, P1391, DOI 10.1016/j.buildenv.2005.11.023 Attia S, 2011, STATE ART EXISTING E Bare JC, 2000, INT J LIFE CYCLE ASS, V5, P319, DOI 10.1007/BF02978665 Blengini GA, 2010, ENERG BUILDINGS, V42, P869, DOI 10.1016/j.enbuild.2009.12.009 Blengini GA, 2010, INT J LIFE CYCLE ASS, V15, P652, DOI 10.1007/s11367-010-0190-5 Bribian IZ, 2009, BUILD ENVIRON, V44, P2510, DOI 10.1016/j.buildenv.2009.05.001 Buchan RD, 2003, ESTIMATING BUILDERS Cole RJ, 1996, BUILD ENVIRON, V31, P307, DOI 10.1016/0360-1323(96)00017-0 Cole RJ, 1999, BUILD ENVIRON, V34, P335 Ding GKC, 2007, BUILD RES INF, V35, P487, DOI 10.1080/09613210601116408 Fava J, 2009, J IND ECOL, V13, P491, DOI 10.1111/j.1530-9290.2009.00150.x Fay R, 2000, BUILD RES INF, V28, P31 Goedkoop M, 2010, INTRO TO LCA Guinee JB., 2002, HDB LIFE CYCLE ASSES, P692 Han G, 2011, LIFE CYCLE ASSESSMEN Huijbregts MAJ, 2003, ENVIRON SCI TECHNOL, V37, P2600, DOI 10.1021/es020971+ ISO, 2006, 140402006 ISO, V2006 ISO, 2006, 14044 ISO, V2006 Iyer-Raniga U, 2012, BUILD ENVIRON, V47, P138, DOI 10.1016/j.buildenv.2011.08.001 Khasreen Mohamad Monkiz, 2009, Sustainability, V1, DOI 10.3390/su1030674 Kofoworola OF, 2009, ENERG BUILDINGS, V41, P1076, DOI 10.1016/j.enbuild.2009.06.002 Lopez-Mesa B, 2009, BUILD ENVIRON, V44, P699, DOI 10.1016/j.buildenv.2008.05.017 Mithraratne N, 2004, BUILD ENVIRON, V39, P483, DOI 10.1016/j.buildenv.2003.09.008 Monahan J, 2011, ENERG BUILDINGS, V43, P179, DOI 10.1016/j.enbuild.2010.09.005 Ochsendorf J, 2011, METHODS IMPACTS OPPO Ortiz O, 2009, CONSTR BUILD MATER, V23, P28, DOI 10.1016/j.conbuildmat.2007.11.012 Ortiz-Rodriguez O, 2010, SCI TOTAL ENVIRON, V408, P2435, DOI 10.1016/j.scitotenv.2010.02.021 Ove Arup and Partners Hong Kong Ltd, 2007, INTR LIF CYCL EN ASS Peuportier BLP, 2001, ENERG BUILDINGS, V33, P443, DOI 10.1016/S0378-7788(00)00101-8 Rebitzer G, 2004, ENVIRON INT, V30, P701, DOI 10.1016/j.envint.2003.11.005 Rossi B, 2012, BUILD ENVIRON, V51, P395, DOI 10.1016/j.buildenv.2011.11.017 Sartori I, 2007, ENERG BUILDINGS, V39, P249, DOI 10.1016/j.enbuild.2006.07.001 Scheuer C, 2003, ENERG BUILDINGS, V35, P1049, DOI 10.1016/S0378-7788(03)00066-5 Singh A, 2010, J MONETARY ECON, V57, P729, DOI 10.1016/j.jmoneco.2010.05.012 Suh S, 2007, INT J LIFE CYCLE ASS, V12, P351, DOI 10.1065/lca2007.08.358 Thiers S, 2012, BUILD ENVIRON, V51, P276, DOI 10.1016/j.buildenv.2011.11.018 Thormark C, 2002, BUILD ENVIRON, V37, P429, DOI 10.1016/S0360-1323(01)00033-6 Utama A, 2008, ENERG BUILDINGS, V40, P1911, DOI 10.1016/j.enbuild.2008.04.017 Utama A, 2009, ENERG BUILDINGS, V41, P1263, DOI 10.1016/j.enbuild.2009.07.025 Van Ooteghem K, 2012, BUILD ENVIRON, V49, P212, DOI 10.1016/j.buildenv.2011.09.028 Wu JG, 2010, ENVIRON MANAGE, V46, P610, DOI 10.1007/s00267-010-9497-z Abd Rashid, Ahmad Faiz Yusoff, Sumiani 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD RENEW SUST ENERG REV" Energy Conversion and Management Vol. 95 (2015)
Available at: http://works.bepress.com/facultyofengineering_universityofmalaya/19/