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ABSTRACT

An analysis method previously used to detect observed intra- to multidecadal (IMD) climate regimes was

adapted to compare observed and modeled IMD climate variations. Pending the availability of the more

appropriate phase 5 Coupled Model Intercomparison Project (CMIP-5) simulations, the method is demon-

strated using CMIP-3 model simulations. Although the CMIP-3 experimental design will almost certainly

prevent these model runs from reproducing features of historical IMD climate variability, these simulations

allow for the demonstration of the method and illustrate how the models and observations disagree. This

method samples a time series’s data rankings over moving time windows, converts those ranking sets to

a Mann–Whitney U statistic, and then normalizes the U statistic into a Z statistic. By detecting optimally

significant IMD ranking regimes of arbitrary onset and varying duration, this process generates time series of

Z values that are an adaptively low-passed and normalized transformation of the original time series. Prin-

cipal component (PC) analysis of the Z series derived from observed annual temperatures at 92 U.S. grid

locations during 1919–2008 shows two dominant modes: a PC1 mode with cool temperatures before the late

1960s and warm temperatures after the mid-1980s, and a PC2 mode indicating a multidecadal temperature

cycle over the Southeast. Using a graphic analysis of a Z error metric that compares modeled and observed Z

series, the three CMIP-3 model simulations tested here are shown to reproduce the PC1 mode but not the PC2

mode. By providing a way to compare grid-level IMD climate response patterns in observed and modeled

data, this method can play a useful diagnostic role in future model development and decadal climate fore-

casting.

1. Introduction

Although past projections of future climate change

have emphasized mid- or late twenty-first-century con-

ditions (Cubasch et al. 2001; Meehl et al. 2007a,b), at-

tention has recently turned to the prediction of upcoming

decadal periods. In addition to presenting longer-term

climate projections, the most recent phase of the Coupled

Model Intercomparison Project (CMIP-5) and the In-

tergovernmental Panel on Climate Change’s (IPCC) Fifth

Assessment Report will also include decadal hindcast and

prediction experiments (Meehl et al. 2009; Taylor et al.

2008). The goals of the Met Office’s Decadal Prediction

System (Smith et al. 2007) include improving the un-

derstanding and prediction of decadal climate variability

and eventually producing operational decadal forecasts.

This interest in predicting decadal climate is driven in

part by the importance of decadal time scales in human

affairs. Meehl et al. (2009) note decision makers’ con-

cerns about climate over a 10–30-yr time horizon, given

the decadal duration of persistent drought and the time

scales of hurricane activity and fisheries regimes. Zwiers

(2002) and Cane (2010) also note how the extended du-

ration of typical climate projections are inconsistent with

the decadal or multidecadal outlook of managers that

make climate-sensitive decisions. Hurrell et al. (2010)

point out how decadal climate forecasts might be useful

in managing long-term investment strategies. As the

social effects of climate variation are frequently local,
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attention has also been directed to predicting potential

climate impacts over regional spatial scales (International

ad hoc Detection and Attribution Group 2005). In re-

viewing the issues that need to be addressed before de-

cadal forecasts can be practically useful, Vera et al. (2009)

cite the need for research that translates decadal pre-

diction information into the spatial scales needed to

support decision making. Both Vera et al. (2009) and

Cane (2010) summarize the needs of potential stake-

holders and the current state of decadal climate pre-

diction and conclude that while there is clear demand

for such prediction, that demand is not being met. Al-

though the physical basis for these forecasts is a rela-

tively new area of research (Latif et al. 2006, 2010; Collins

et al. 2006; Smith et al. 2007; Keenlyside et al. 2008;

Pohlmann et al. 2004; Murphy et al. 2009; Solomon et al.

2011), regional forecasts of decadal climate conditions are

potentially useful to today’s policy and decision makers.

However, before decision makers can confidently use

decadal climate projections the associated models must

be verified somehow. One of the most widely recognized

measures for testing a model’s ability to predict climate

is the ability to simulate current or past climate (Boer

2000; Lambert and Boer 2001; Giorgi and Mearns 2002;

Tebaldi et al. 2005; Räisänen 2007; Randall et al. 2007),

which suggests that models should demonstrate a ‘‘track

record’’ of either hindcasting or reproducing known

intra- to multidecadal (IMD) climate variability. Yet the

ability of models to reproduce historical IMD climate

regimes has not been the focus in past attempts at model

verification. Instead, the emphasis has been on comparing

observed and modeled climate statistics calculated over

multidecadal periods. For example, Giorgi and Mearns

(2002) and Tebaldi et al. (2005) considered the differ-

ences in observed and modeled regional temperature

means during 1961–90, and the difference between pro-

jected mean conditions and a model ensemble mean dur-

ing 2071–2100. Pierce et al. (2009) calculated skill scores

based on the mean squared spatial error between gridded

maps of modeled and observed 1960–99 seasonal climate

statistics over the western United States. Taking a similar

approach but with a narrower geographical focus, Brekke

et al. (2008) calculated the difference between modeled

and observed means, variances, interdecadal variances,

and the seasonal amplitude and phase for northern Cal-

ifornia precipitation and temperature during 1950–99. In

tracing the evolution of CMIP-1, -2, and -3 model output,

Reichler and Kim (2008) calculated a model performance

index based on the difference between modeled and ob-

served climatologies for a range of climate variables dur-

ing, for the most part, 1979–99. Less emphasis has been

placed on verifying if models can reproduce the observed

variation over time. Although trend analysis has been used

in attribution studies that try to link climate forcing in-

fluences to observed climate change (Knutson et al. 1999;

Hegerl and Allen 2002; Karoly and Wu 2005; Knutson

et al. 2006), trend fitting assumes more or less linear

behavior in time and is not suited to detecting general

climate variability (e.g., abrupt regime shifts or irreg-

ular decadal climate cycles). Graphical methods exist

for summarizing the mean squared difference, the ratio

of variance, and the correlation between observed and

modeled time series (Lambert and Boer 2001), but cor-

relation values by themselves give an incomplete picture

of how modeled and observed data covary in time. Spe-

cifically, they give no information about a model’s ability

to reproduce the onset and duration of IMD climate pe-

riods in the historical record, or of leading or lagging

relationships between modeled and observed climate

shifts. Statistical and graphical methods that provide

such information may be useful in model verification,

as decadal prediction would require the ability to cor-

rectly predict the onset, and possibly the duration of

IMD climate regimes.

Previous work here focused on detecting nonlinear

and regimelike climate behavior via a method that cal-

culates Mann–Whitney Z (MWZ) statistics over running

time windows. This approach to time series analysis has

been used to identify significant IMD periods in U.S.

temperature, precipitation, and streamflow (Mauget

2003, 2004; Cordero et al. 2010) and in South American

snowpack and streamflow (Masiokas et al. 2010). In the

current work, this ranking-based method is adapted to

compare observed and modeled decadal temperature

regimes at the model’s grid resolution. In this demon-

stration the running MWZ method is applied to annual

temperature time series derived from U.S. Historical

Climatology Network data (USHCN; Menne et al. 2009)

and modeled temperature data derived from the CMIP-3

Climate of the Twentieth Century Project (20C3M:

Folland et al. 2002; Covey et al. 2003) to produce Z

series. The Z series, which are normalized and low-

passed transformations of the original data series, are

then used to compare the timing and significance of

observed and modeled twentieth-century U.S. IMD tem-

perature regimes. This comparison is expressed in a Z

error metric that is graphically presented to show the

difference in modeled versus observed IMD variability

at the highest spatial resolution that the model allows.

It should be understood that the CMIP-3 ensemble

average model runs that we test are used only as examples

of modeled climate behavior; there is little expectation

that they should reproduce the location and timing of past

IMD climate regimes. The initial conditions of the 20C3M

experiments were derived from the state of preindustrial

control (PICNTRL) runs at various times during the
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nineteenth century, which, as will be seen, has likely

influenced the model’s evaluations. Decadal climate vari-

ation is considered a function of both initial conditions and

boundary forcing over time (Meehl et al. 2009; Latif et al.

2010), and correct initialization is thought to be a re-

quirement when reproducing natural decadal-scale ocean

processes (Solomon et al. 2011). As a result, the random

initialization of the 20C3M models’ sea surface temper-

ature (SST) and sea ice conditions will almost certainly

lead to differences in the decadal features of modeled and

observed twentieth-century climate. This initialization error

is not a problem in the current work but is actually useful,

as the main purpose here is to demonstrate a statistical/

graphical method for detecting errors or differences in

modeled IMD climate. However, although the 20C3M

experiments were not initialized in a way that would, in

principle, allow them to reproduce past IMD climate

regimes, future CMIP-5 hindcast modeling experiments

will be conducted in such a manner (Taylor et al. 2008;

Meehl et al. 2009). By using this method to clearly

identify where and when the modeled and observed

IMD climates differed in initialized hindcasts, future

developers might be better equipped to identify and

correct systematic errors in the model results, test dif-

ferent initialization schemes, and consider the general

questions surrounding decadal predictability.

The next section (section 2) will describe three models

evaluated via the process described above, and the for-

mation of a gridded dataset for annual temperature over

the continental U.S. during 1919–2008. Section 3 will

demonstrate the formation of a Z series from a grid-

ded average of USHCN annual temperature records

via the running Mann–Whitney Z method, and will then

describe similar results calculated over 92 continental

U.S. grid locations. Section 4 will describe the Z error

metric and an ad hoc process for estimating a Z error

threshold from the three model’s PICNTRL runs. Sec-

tion 5 will present and discuss the IMD temperature re-

gimes in the three 20C3M simulations revealed by the

running MWZ method, and the corresponding distribu-

tions of Z error in space and time. Section 6 will sum-

marize how the running MWZ method was used here to

evaluate the three models, and will briefly discuss how

it might be used as a diagnostic tool in decadal climate

prediction.

2. Modeled and observed temperature data

The three coupled atmosphere–ocean global cli-

mate models (AOGCMs) that were evaluated are:

the Flexible Global Ocean–Atmosphere–Land System

Model gridpoint version 1.0 (FGOALS; Yu et al. 2002,

2004), the Model for Interdisciplinary Research on Climate

3.2, medium-resolution version (MIROC; Hasumi

and Emori 2004), and the National Center for Atmo-

spheric Research’s (NCAR) Parallel Climate Model

(PCM; Washington et al. 2000; Meehl et al. 2004). The

FGOALS, MIROC, and PCM 20C3M model runs begin

at various times in the nineteenth century and end in

either December 1999 or December 2000. As de-

scribed in section 1, the initial conditions of the 20C3M

runs were derived from the state of preindustrial control

runs. Each model was run globally with estimated his-

torical radiative forcings and has an identical T42 spatial

grid resolution over the continental United States (Fig.

1). None of these coupled models were flux adjusted.

Although all three models’ 20C3M runs included the

effects of well-mixed greenhouse gases, the forcing asso-

ciated with known variations in anthropogenic and volca-

nic aerosol, land use, ozone and solar variability differed

between the models. For more details see the Program for

Climate Model Diagnosis and Intercomparison (PCMDI)

online documentation (http://www-pcmdi.llnl.gov/ipcc/

model_documentation/ipcc_model_documentation.php)

and the discussion of 20C3M forcing scenarios in Kunkel

et al. (2006). Details of the 20C3M forcing for PCM can

be found in Meehl et al. (2003, 2004). Grid-level annual

temperature time series were formed from the ensemble

average of annual temperatures from three runs of each

model. Using an approach similar to Hegerl et al.’s

(2007), the resulting 20C3M annual temperature time

series were extended to 2008 by the addition of similar

ensemble average series from the IPCC Special Report

on Emissions Scenarios (SRES) A1B scenario simula-

tions at each grid location. Each model’s three SRES

A1B simulations were initialized by the end state of the

corresponding run in the 20C3M simulations.

Time series of observed annual mean surface tem-

peratures over the continental United States were de-

rived from USHCN monthly temperature station data.

FIG. 1. North American–region T42 grid locations. Black grid

locations mark continental U.S. grid areas, each having at least five

USHCN stations with less than 20% estimated monthly data during

1919–2008. The black square marks the center of the southern

Alabama grid location.
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The USHCN station network is a subset of the U.S.

cooperative network (U.S. National Weather Service

2000), which has undergone an adjustment to account for

historical changes in station locations, instrumentation,

and observing practices, as well as the effects of urbani-

zation and nonstandard siting (Menne and Williams 2005,

2009). To provide as direct a comparison as possible with

the three models’ gridded temperature records, the annual

temperatures from the station data were averaged over

the semi-equal-angle areas surrounding each T42 grid

location. Although missing USHCN monthly tempera-

ture values are infrequent, values estimated from nearby

station data are more common, particularly in the western

United States during the early twentieth century. Here,

T42 grid averages were derived from station records that

had less than 20% estimated monthly data during 1919–

2008, and the area surrounding a T42 grid location was

required to contain at least five such stations to calculate

a 90-yr annual temperature series for that grid location.

The five-station threshold was chosen based on an analy-

sis similar to that of Janis et al. (2004), and the need for

a reasonably representative distribution of observed grid-

ded temperature records in the western United States.

Given these data requirements, the formation of observed

annual temperature time series for 1919–2008 was limited

to 92 continental U.S. T42 grid locations (Fig. 1). That

distribution of grid locations allows for observed versus

modeled comparisons to be made over most of the

United States east of the 100th meridian during that

period, but includes some spatial gaps in the west.

3. Time series analysis via running Mann–Whitney
Z statistics

At each of the 92 T42 grid locations, the running

MWZ method ranks a time series’ data values, samples

those rankings over moving time windows of nI years’

duration, then converts each sample of rankings into

a Mann–Whitney U statistic (Mann and Whitney 1947).

A U statistic for a sample of rankings within an nI-yr time

window can be calculated based on the sample’s size and

rank sum (Mendenhall et al. 1990; Wilks 1995), but can be

understood more intuitively as the total number of data

values outside the sampling window that precede each

sample value when all data values are arranged by rank

(Hollander and Wolfe 1999). Stated otherwise, for a time

window spanning an arbitrary nI-yr period in the time

series, for each ranking value within that period, count

the total number of values from outside the window whose

ranks are less than that value; the U statistic is the sum of

all such counts for each ranking value in the nI-yr time

window. Thus, for a 90-yr time series divided into an nI 5

10 yr sample window and nII 5 80 yr outside the sample

window, the highest possible U statistic would occur when

the sample contains the 10 highest-ranked years (U 5

80 3 10), while the lowest value would result from a sam-

ple containing the 10 lowest-ranked years (U 5 0 3 10).

Randomly sampled sets of 10 rankings produce U statistics

that are normally distributed between those two extreme

values and are generally proportional to the incidence

of high rankings in the sample. That distribution’s mean

is equal to the average of the minimum and maximum

U values; for example,

m 5 0:5[(0 3 10) 1 (80 3 10)] 5 0:5nInII, (1)

while the standard deviation can be estimated via the

expression (Mendenhall et al. 1990)

s 5 f[nInII(nI 1 nII 1 1)]/12g1/2. (2)

Gaussian U statistics can be Z normalized using these

null parameters, with significantly high (low) Z values

indicating a significant incidence of high (low) annual

temperature rankings relative to a null hypothesis that

assumes random and independent sampling (H0):

Z 5
U 2 m

s
. (3)

To demonstrate how Z series are formed from the

Eq. (3) Z statistics, Figs. 2a–e show the running MWZ

method applied to a grid-averaged annual temperature

record calculated over the southern Alabama grid area

marked in Fig. 1. Figure 2a shows the annual temperature

time series and its mean, while Fig. 2b shows the Z statistics

for temperature rankings sampled over moving 10-yr time

windows. The latter figure’s horizontal lines mark negative

and positive significance levels relative to H0 at two-sided

95%, 99%, and 99.9% confidence levels. Figure 2c’s hor-

izontal black lines show the 10-yr ranking regimes marked

as significant at a 95% or better confidence level in Fig. 2b

superimposed on the actual data. The vertical placement

of those lines marks the regime’s corresponding Z statistic,

as measured by the figure’s right axis.

To extend the Fig. 2c analysis to a wider range of time

scales, the calculation of running U statistics is repeated

with sampling windows between 6 and 30 yr. Those U

statistics are then normalized into Z statistics using the m

and s parameters for each of the 25 sample sizes cal-

culated via Eqs. (1) and (2). The Eq. (3) normalization,

in addition to estimating the significance of rankings for

a fixed sample size, also allows for comparing the signif-

icance of Z statistics derived from different sample sizes.

Thus, after the running U statistics from each analysis

were normalized by the appropriate null parameters, the
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ranking regimes from all 25 tests with Z statistics that ex-

ceeded a two-sided 95% confidence threshold are com-

bined as in Fig. 2d. Those pooled results are then screened

to identify the periods that result in the greatest absolute

significance over nonoverlapping time windows, which are

marked by the thick black horizontal traces in Fig. 2e.

This screening process begins by sorting all the regime

periods by the absolute value of the period’s Z statistic

(jZj) and recording the most significant statistic and its

period. The Z series values for that period are assigned

FIG. 2. (a) Time series of annual temperature averaged from southern Alabama USHCN

stations during 1919–2008. Horizontal line shows the 90-yr mean. (b) MWZ statistics of ranked

annual temperatures sampled over running 10-yr time windows. Horizontal lines mark two-

sided 95% (Z 5 61.96), 99% (Z 5 62.575), and 99.9% (Z 5 63.29) confidence intervals. (c) As

in (a), but with the horizontal width of the black bars showing significant 10-yr cool and warm

periods, as indicated in (b). Vertical placement of bars shows corresponding Z values as marked

by the right axis. (d) Significant cool and warm periods indicated by running MWZ analyses

with 6-, 7-, . . . , 30-yr sampling windows. (e) The Z series for southern Alabama annual tem-

perature. Black sections show most significant cool and warm periods in (d) occurring over

nonoverlapping time windows. The Z values for remaining years (gray traces) are defined by

the year’s maximum absolute Z value in all the analyses.
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that Z value. Then, the next most significant jZj statistic

with a period that does not overlap with that of the most

significant statistic is recorded, and those years are as-

signed that value in the Z series. In the Fig. 2e Z series

these two leading statistics occurred during a 1958–85

cool period (Z 5 25.486) and a 1929–57 warm period

(Z 5 3.618). The process iteratively continues by re-

cording the next most significant jZj statistic with a pe-

riod that does not overlap with all previously recorded

periods, assigns that statistic to the corresponding years

in the Z series, and proceeds until all the significant

ranking regimes in all 25 tests have been considered. In

the Fig. 2e Z series this process identifies two other

warm periods during 1998–2007 (Z 5 2.31) and 1921–27

(Z 5 1.996). The Z series values for each year between

these distinct and optimally significant warm and cool

periods are individually assigned according to the max-

imum significant jZj value for that year in all of the

pooled analyses, which are shown in Fig. 2e’s gray traces.

The general effect is to form continuous Z series that

tend to define the outer envelope of the Z statistics in the

Fig. 2d pooled analyses, with sign transitions at years with

overlapping positive and negative significant statistics

(e.g., the 1997–98 transition in Fig. 2e).

In previous applications, the goal of the running MWZ

process was to detect ranking sequences that were in-

consistent with null hypotheses that assumed hypothet-

ical stationary climate conditions. As stationary climate

variability is usually required to possess the interannual

persistence of observed data, those hypotheses accoun-

ted for that persistence. For example, the null hypothesis

of Mauget (2004) held that 60-yr streamflow records

possessed year-to-year persistence, but contained no

IMD variability (H1). The Eq. (3) m and s null param-

eters consistent with H1 were estimated via filtering and

autoregressive modeling of each annual streamflow se-

ries, as well as Monte Carlo (MC) simulations to generate

U null distributions from the rankings of the resulting

noise series. However, unlike Mauget (2004), the ultimate

goal of the Z error test is not to test for nonstationarity in

a sample of rankings, but to find dissimilarity between

ranking samples in observed and modeled climate data. A

key requirement in achieving that goal is that identical

ranking sequences in a grid location’s modeled and ob-

served data values, which produce identical U statistics,

must result in identical Z statistics. To satisfy this re-

quirement, the same null parameters must be used in

Eq. (3) to normalize modeled and observed U statistics.

This condition is generally not met by H1 null parame-

ters estimated from modeled and observed data, as that

MC protocol can produce U null distributions with varying

s values at a fixed sample size. As the emphasis here is on

the consistent normalization of U statistics, and not on

testing for nonstationary climate variation, the fixed null

parameters in Eqs. (1) and (2) are used for each of the 25

sample sizes considered. Thus, in this comparison role the

null hypothesis for the Eq. (3) Z values holds that a se-

quence of rankings in a time series is consistent with

random sampling (H0). This null hypothesis assumes no

interannual persistence; as a result, it tends to assign higher

significance levels than hypotheses that do assume sta-

tionary ‘‘red’’ climate variability.

The running MWZ method samples a time series over

moving time windows to identify significant ranking se-

quences in climate data. This sampling process is repeated

over a range of intra- to multidecadal time windows to

identify the most significant runs of the rankings within

those periods, and thus the process has the properties

of an adaptive low-pass filter. Because U statistics

are derived from rankings, the method is resistant to

the presence of outliers and can be applied to normally

or nonnormally distributed data. As stated before,

the transformation of the normal U statistics into Z

statistics allows for the comparison of ranking sets

from different sample sizes. In addition, this ranking,

U-transformation, and Z-normalization procedure allows

for making observed versus modeled and model versus

model comparisons with AOGCM data records that

may have incorrect variance and/or biased means (Bell

et al. 2000; Randall et al. 2007). However, because the

method only evaluates rankings, it gives no insights

into the nature or magnitude of those biases. Unlike its

methodological cousin wavelet analysis (Lau and Weng

1995; Torrence and Compo 1998), the running MWZ

algorithm is not based on an underlying assumption of

harmonic behavior. Instead, it extends the generality of

moving window methods with a more general assump-

tion, that is, that climate variation consists of simple

noncyclic ranking regimes that occur over a range of time

scales and have arbitrary onset times. Given the ability to

detect such regimes, the method can detect a wide range of

climate variability. Abrupt climate shifts might reveal

themselves as significant cool and warm periods that are

immediately adjacent in time. An example of such a shift

in southern Alabama temperatures in the late 1950s is

apparent in the significant 10-yr ranking regimes marked

in Fig. 2c and in the Fig. 2e Z series, which shows a sig-

nificant warm period during 1929–57 immediately fol-

lowed by a highly significant cool period during 1958–85.

Similarly abrupt cyclic behavior can be revealed by Z

values of alternating sign marking periods of significant

high- and low-ranked data, although such alternating be-

havior is also found in Z series generated from smoothly

harmonic variation (see Figs. A1a–d in the appendix).

Thus, significant positive and negative Z statistics that are

immediately adjacent in time may not always indicate
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a regime shift in the data. A linear trend signature consists

of significant Z statistics of opposite sign at the beginning

and end of a time series, separated by periods of less sig-

nificant or insignificant statistics (Fig. A1e). Overall, the

running MWZ procedure could be considered as a robust,

adaptive, and normalized low-passed filter.

a. Principal component analysis of USHCN
temperature Z series

A comparison of unrotated and Varimax rotated (not

shown) principal component (PC) analyses (PCAs) of the

Z series from all 92 grid locations indicated that the un-

rotated PCA provided higher levels of correlations with

the Z series that were more consistent and spatially co-

herent. The unrotated and grid-area-weighted PCA shows

that U.S. temperature during 1919–2008 projects mainly

onto one of two low-frequency modes. Figures 3a,b are the

normalized first (PC1) and second (PC2) principal com-

ponent time series of that analysis, which explain 53% and

33% of the total Z series variance, respectively. The cor-

relations of those PC series with each grid’s Z series are

found in Figs. 3c,d. Figure 3c’s high (.0.8) positive PC1

correlations over southern Florida and much of the United

States outside of the Southeast show that that the PC’s

form closely represents that grid location’s Z series. Thus,

those areas experienced a fairly stable cool period until the

late 1960s, followed by a transition to warmth after the mid-

1980s. Over other grid locations in the southeastern and

midwestern states, similarly high positive correlations in

Fig. 3d indicate IMD variations that are more consistent

with the PC2 time series. A warm period between 1919

and the late 1950s abruptly gave way to a cool period

extending to about the mid-1980s, which was in turn

followed by a more gradual shift to a second warm re-

gime after the late 1990s. The area covered by Fig. 3d’s

positively correlated grid locations coincides with one

of the few global land areas that Folland et al. (2001) and

Trenberth et al. (2007) show as having negative annual

temperature trends during the twentieth century. How-

ever, Fig. 3b’s PC2 series suggests that the signs of the

trends in these areas would depend on the periods over

which the trends were fitted; for example, trends fitted

after 1970 would more likely be positive.

Robinson et al. (2002), Pan et al. (2004), and Kunkel et al.

(2006) have all noted weakened warming trends or cooling

trends in the central and eastern United States in the latter

half of the twentieth century. Pan et al. (2004) referred to

the lack of warming in central U.S. summer temperatures

as a ‘‘warming hole.’’ Although the goal of these studies

was not to identify the general location and timing of this

cool regime, the cool period described by Robinson et al.

(2002) and Kunkel et al. (2006) roughly coincides with the

cool period of the PC2 temperature cycle in Fig. 3b. As

a result, we will also use the term warming hole to refer to

the period of cool temperatures in the southeastern United

States between the late 1950s and the mid-1980s.

FIG. 3. (a) Normalized PC1 times series from unrotated PCA of Z series at Fig. 1’s 92 black grid locations. (b) As in

(a), but for normalized PC2 time series. (c) Correlation of PC1 with the Z series at each grid location. (d) Correlation

of PC2 with the Z series at each grid location.
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b. Graphic analysis of Z series

The normalizing property of the running MWZ method

makes it possible to graphically compare IMD temper-

ature variations with different means and variances on

a common scale. If a shading scheme for significance is

defined, Z series similar to that in Fig. 2e can be collapsed

onto one horizontal axis, and the results for multiple series

can be compared. Using a cool–warm shading scheme

showing negative and positive significances at 95%,

99%, and 99.9% confidence levels, Fig. 4a plots the Z

series for each of the 92 black T42 grid locations in Fig. 1.

As mapped in Fig. 4b, each grid location is in one of four

color-coded U.S. regions, and the Fig. 4a analyses are

FIG. 4. (a) Positive (warm shade) and negative (cool shade) Z series magnitudes from run-

ning MWZ analyses of the annual temperature time series at each of Fig. 1’s black T42 grid

locations. Positive and negative significance are marked by the top legend’s shading scheme.

The vertical axis marks the grid location number. (b) Grid location number corresponding to

the vertical axis index number in (a). Grids in the yellow-, red-, and blue-shaded regions cor-

relate with Fig. 3a’s PC1 series, while grids in the green-shaded region correlate with Fig. 3b’s

PC2 series.
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arranged such that as the grid number increases from 1

to 92 the associated grid’s collapsed Z series are plotted

from bottom to top. The light-green region in Fig. 4b

coincides with those grid locations whose Z series pro-

jects onto Fig. 3b’s PC2 series (grids 1–30), while Z series

in the yellow (grids 31–41), red (grids 42–66), and blue

(grids 67–92) regions are generally correlated with PC1.

The Z series for grids 1–30 in Fig. 4a show the PC2

multidecadal temperature cycle, which is similar to that

found in Fig. 2e’s southern Alabama temperature re-

cord. The cycle’s cool period was notably significant in

some areas, with Z statistics ,24.0 at grids 12 and 15–29

between the late 1950s and the 1980s. When measured in

terms of the incidence of low-ranked cool years during

1919–2008, the warming hole in annual temperatures is

geographically centered over these southern U.S. grid

locations. The 1958–85 southern Alabama (grid 25) cool

period noted above produced the most significant con-

centration of low-ranked annual temperature values (Z 5

25.486) in all of the analyses of the gridded USHCN data.

Although prolonged warm periods are rare in the data

before 1960, the southern areas at grids 22–29 all experi-

enced a multidecadal warm regime between the early

1930s and the late 1950s. All of the 92 grid location’s

Z series end in warm regimes, but the warm periods in

Fig. 4b’s green region (grids 1–30) during 1998–2008 have

later onset and occur at a generally lower significance

level than the remaining 62 grid locations.

Similar to PC1’s general form in Fig. 3a, the late

century warm period over the United States outside of

the Southeast is first evident in the mid- to late 1970s in

Fig. 4a. Although recent warming over the southeastern

United States began after the mid-1990s and is generally

less significant, the southern Florida grid location (grid

31) shows highly significant warmth during 1985–2008

(Z 5 5.210). Warm regimes with similar timing are also

found at grid locations that include coastal areas of the

northeast (grids 33, 35–38). Highly significant (Z . 5.0)

continuous late-century warm periods are found at grid

locations in Fig. 4b’s blue-shaded western region (grids

74, 75, 77, 81–83, 85–87, and 90). The most significant

warm period during 1919–2008 at any grid location (Z 5

6.147) is found at grid 82 in southern California during

1980–2008.

4. The Z error metric

The Z error (ZE) is simply the difference between the

Z series of modeled and observed annual temperature

records at the same grid location during year t:

ZEt 5 ZMod(t) 2 ZObs(t). (4)

Figure 5a plots the time series of modeled FGOALS an-

nual temperature at the southern Alabama grid location,

with the superimposed Z series resulting from the running

MWZ analysis. Figure 5b shows the grid’s corresponding

observed USHCN temperature record and Z series, and

Fig. 5c plots the ZE series, that is, the difference between

the Z series in Figs. 5a,b. The measure of the difference

between a grid point’s modeled and observed IMD tem-

perature variations is the mean absolute Z error (MAZE)

of the ZE series during 1919–2008; that is,

MAZE 5
1

90
�
90

t51
abs(ZEt). (5)

As constant Z normalizing parameters are used for

each of the running sample sizes, time series with iden-

tical sequences of rankings result in identical Z traces and

MAZE values of 0.0. Differences in the timing or sig-

nificance of cool or warm regimes produce MAZE . 0.0.

Greater dissimilarity in modeled and observed Z series

leads to increased positive MAZE values, but because

the ZE metric and Eq. (5) are new statistical measures,

there are no standard methods for estimating MAZE

thresholds that indicate the significant difference between

two Z series. To estimate such a threshold, MAZE values

were calculated between the 92 U.S. temperature Z series

in Fig. 4a and Z series derived from 90-yr annual tem-

perature records from PCM, FGOALS, and MIROC

preindustrial control (PICNTRL) runs at the same grid

location. The PICNTRL runs, which vary in length in the

three models, are forced by fixed solar variability and by

preindustrial ozone and greenhouse gas concentrations.

As these model runs are marked by random internal cli-

mate variability characteristic of an ocean–atmosphere

system in equilibrium, the Z series derived from the con-

trol run temperature series are representative of ran-

dom climate variation. As a result, a distribution of MAZE

values calculated between the PICNTRL Z series and

Fig. 4a’s observed Z series can be used as a null distribu-

tion to estimate a MAZE dissimilarity threshold. Such a

null distribution was formed from nine MAZE values

calculated at each of the 92 grid locations. Three values

were derived from years 51–140 of three 150-yr FGOALS

PICNTRL runs, and the remaining six values were calcu-

lated from three nonoverlapping 90-yr segments from the

single available PCM and MIROC PICNTRL runs. The

resulting 828 MAZE values are approximately normally

distributed, with a minimum of 1.157, a maximum of 6.447,

and a median of 3.186. MAZE values calculated between

the observed and modeled temperature records will be

considered dissimilar when they are greater than that

distribution’s one-sided 95th percentile (« 5 1.819).
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5. Z series, Z error, and MAZE patterns of the
FGOALS, MIROC, and PCM models

Figures 6a–c show the results of the running MWZ

analyses for the FGOALS, MIROC, and PCM ensemble

mean temperature records, respectively. In each figure,

the Z series are arranged by grid location as mapped in

Fig. 4b, and are plotted according to Fig. 4a’s cool–warm

shade coloring scheme. As a result, there is direct cor-

respondence between the 1919–2008 Z series of mod-

eled temperature and Fig. 4a’s observed Z series at each

grid location. Figures 6d–f show the three models’ ZE

series at each grid location, after they are collapsed on

a horizontal axis using the blue–red-shade coloring

scheme shown above (Fig. 6d). Given the form of Eq.

(4), negative (positive) ZE values are marked by blue

(red) shades and show when and where the model was

generating lower- (higher-) ranked annual mean tem-

peratures relative to observed rankings. The horizontal

bars of Figs. 6g–i plot the MAZE values for the corre-

sponding ZE trace to the left in Figs. 6d–f, and those

figures’ green vertical lines mark the « MAZE dissimi-

larity threshold.

Figure 6a–c’s modeled Z series are generally consis-

tent with the first PC of observed Z series in Fig. 3a, that

is, with relatively cool temperatures before the early to

mid-1970s, followed by warm periods of varying signifi-

cance that extend to the end of the data record. An ex-

ception to that pattern of behavior is seen in the FGOALS

Z series (Fig. 6a), which shows highly significant (Z ,

23.29) cool conditions over almost every U.S. grid area

between 1919 and the mid-1940s. At grids 1–40 the model

shows a shift from early cool conditions to insignificant

Z values during the 1960s, and then to significant posi-

tive values after the early 1970s. This gradual shift is more

consistent with a noisy linear trend in temperature over

these eastern grid areas during 1919–2008 (see the dis-

cussion of Fig. A1e in the appendix). In contrast, the

MIROC and PCM model’s Z series (Figs. 6b,c) show

fairly uniform evidence of a shift from cool regimes to

warm conditions over almost all of the 92 grid areas in the

mid- to late 1970s. In Fig. 6b the MIROC model’s pre-

ceding cool regimes at grid locations east of the Rockies

(grids 1–65) during the mid-1940s to mid-1970s are gen-

erally more significant than the corresponding PCM Z

values in Fig. 6c. However, while the ‘PC1 like’ variation

in observed temperatures is limited to grid locations in

the yellow, red, and blue shaded areas of the United States

in Fig. 4b, the trend or regimelike behavior in modeled

temperatures is found at almost all 92 U.S. grid locations in

FIG. 5. (a) Time series of modeled FGOALS annual temperature at the southern Alabama

grid location (grid 25) with a superimposed Z series resulting from the running MWZ pro-

cedure. (b) As in (a), but for the southern Alabama grid average of USHCN annual temper-

atures. (c) The Z error series formed by subtracting the USHCN Z value for each year in (b)

from the corresponding FGOALS Z value in (a).
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FIG. 6. (a) As in Fig. 4a, but for Z series derived from FGOALS 1919–2008 annual temperature. (b) As in Fig. 4a, but for MIROC annual

temperature Z series. (c) As in Fig. 4a, but for PCM annual temperature Z series. Shading schemes for (a)–(c) are indicated in the legend

above (a). (d) FGOALS ZE series calculated by subtracting USHCN-derived Z series in Fig. 4a from the corresponding FGOALS Z

series in (a). (e) MIROC ZE series calculated by subtracting USHCN-derived Z series in Fig. 4a from the corresponding MIROC Z series

in (b). (f) PCM ZE series calculated by subtracting USHCN-derived Z series in Fig. 4a from the corresponding PCM Z series in (c).

Shading schemes for (d)–(f) are indicated in the legend above (d). (g) FGOALS MAZE at each T42 grid location. The green vertical line

marks a MAZE dissimilarity threshold (1.819). (h) As in (g), but for MIROC MAZE. (i) As in (g), but for PCM MAZE.
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Figs. 6a–c. The observed low-frequency temperature cycle

apparent at grids 1–30 in Fig. 4a (i.e., the ‘‘PC2 like’’

variation of Fig. 3b) is not found in the corresponding

modeled Z traces. As a result, the grid locations where the

observed Z traces correlate with PC2 (i.e., the southeast-

ern U.S. areas marked by the light-green shade in Figs.

4a,b) show clear patterns of ZE variation in Figs. 6d–f.

In Fig. 6a, the FGOALS Z traces show highly significant

cool periods at grids 1–30 before the late 1950s, while the

observed data for the same time period shows significant

warmth at grids 21–29. The model’s tendency to produce

low-ranked temperatures where high-ranked tempera-

tures were observed is evident in the dark-blue-shaded

negative ZE values in Fig. 6d at those grid locations

before 1958. Although FGOALS temperatures were

trending upward in the southeastern United States after

1958, that year marked the beginning of the warm hole

period in observed temperatures. The drop in observed

temperature rankings combined with rising modeled

rankings leads to red-shaded positive ZE values in Fig.

6d, which increase in magnitude until the end of the

cool period in the late 1980s. The warming in the ob-

served temperatures during the 1990s and after 2000

brought the observed and modeled Z series values into

relative agreement (jZEj, 1.0). The MIROC and PCM

ZE values at grids 1–30 in Figs. 6e,f are similar in form to

the FGOALS values, but because those models were

producing significantly cool conditions in the Southeast

during the late 1950s to mid-1970s, the modeled and ob-

served Z trace values are closer in value (0.0 , ZE , 3.0).

Although the cool period in the Southeast lasted until the

mid- to late 1980s in the observed data in Fig. 4b, after the

mid-1970s all three models made a transition to signif-

icant warmth in the Southeast. This transition resulted in

high positive ZE values (ZE . 5.0) at grids 1–29 in Figs.

6d–f, which inversely mirror the latter half of the south-

eastern warm hole period in Fig. 4a. The significance of the

late southeastern warming in the FGOALS model in Fig.

6a is generally consistent with that found in the observed Z

values in Fig. 4a (1.96 , Z , 3.29). In contrast, the MIROC

and PCM results reflect a greater incidence of high-ranked

annual temperatures (Z . 3.29) at southeastern grid lo-

cations, which produce weakly positive ZE values (1.0 ,

ZE , 3.0) during the 1990s and after 2000 in Figs. 6e,f.

Over U.S. grid areas where the Z series correlate with

Fig. 3a’s first PC (i.e., grid locations in the yellow, red,

and blue areas in Fig. 4b), the Z traces of modeled and

observed temperatures are generally in closer agree-

ment. In Fig. 6d the FGOALS ZE values tend to be

weakly negative in these areas before 1950, which shows

generally lower temperature rankings relative to the ob-

served rankings. In Figs. 6d–f brief runs of high positive

ZE values are evident during the 1970s and 1980s, which

shows that the onset of late-century warming in all three

models preceded the observed warming. However, unlike

the late period modeled Z values in the southeastern PC2

region, the Z values in the PC1 areas are closer to the

observed Z values. This agreement is most evident in the

absence of shaded ZE values in the FGOALS and PCM

models after 1990 in Figs. 6d,f.

The relative agreement of observed and modeled Z

series in the PC1-correlated areas can be seen in the

corresponding MAZE values in Figs. 6g–i. At those grid

locations (grids 31–92) values less than « (1.819) are fairly

common in all three models. In contrast, in the PC2-

correlated region (grids 1–30) MAZE values consistent

with significant dissimilarity (MAZE . «) are more the

rule in all the models. Over the southeastern grids where

the PC2 low-frequency temperature cycle is most clear in

Fig. 4a’s Z series (grids 21–29), the MAZE values for all

three models clearly exceed the « threshold.

The ability to reproduce all of the observed U.S. Z series

is measured by an overall figure of merit (FM) equal to the

grid-area-weighted spatial average of each model’s 92

MAZE values:

FM 5

�
92

igrd51
area(igrd) 3 MAZE(igrd)

�
92

igrd51
area(igrd)

. (6)

Like the MAZE values, lower FM values show greater

agreement between the observed and modeled IMD

climates. When calculated for the FGOALS, MIROC,

and PCM models, those values for U.S. surface tem-

perature during 1919–2008 are 2.759, 2.496, and 2.054,

respectively.

6. Summary and discussion

A time series analysis method used previously to

identify intra- to multidecadal climate variations in his-

torical data records (Mauget 2003, 2004; Cordero et al.

2010; Masiokas et al. 2010) was adapted to test three

AOGCMs’ abilities to reproduce observed U.S. tem-

perature regimes. The approach samples annual temper-

ature rankings over moving time windows, converts

those samples to Mann–Whitney U statistics, and then

normalizes the U statistics into Z statistics (Figs. 2a–c).

The process is repeated using moving windows of vary-

ing duration to identify the most significant ranking re-

gimes in a data record (Fig. 2d). In the present application,

Z statistics for years between these regimes are assigned

according to the year’s maximum absolute Z value in all

the running analyses to form continuous Z series (Fig. 2e).
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A principal component analysis of the Z series at 92

continental U.S. grid locations shows that observed

annual temperature during 1919–2008 generally projected

onto one of two low-frequency modes: a PC1 mode with

cool conditions before the late 1960s followed by a shift to

warmth after the mid-1980s (Figs. 3a,c), and a southeast-

ern PC2 mode with warm conditions before the late 1950s

and after the late 1990s, separated by a cool regime be-

tween those times (Figs. 3b,d).

Because it is based on the analysis of rankings, the

process that produces the Z series is resistant and robust.

The method’s moving window approach allows it to

identify ranking regimes of varying length and arbi-

trary timing, and to expose a wide range of IMD climate

variation (see the appendix). The reexpression of ranking

sequences into Z statistics transforms the data variation

onto a common scale and allows for a simplified graphic

analysis of the observed (Fig. 4a) and modeled Z series

(Figs. 6a–c) at a model’s grid locations. This normaliza-

tion also allows for the calculation of a Z error (ZE)

metric that provides a year-to-year comparison of a grid

location’s observed and modeled Z series (Fig. 5). Graphic

analysis of the resulting ZE series shows when and where

the model’s IMD temperature regimes depart from ob-

servations (Figs. 6d–f). Mean absolute Z error (MAZE)

figures calculated from the ZE series provide a figure of

merit at each grid location (Figs. 6g–i), which can be

spatially averaged to assign an overall figure of merit (FM)

for each model. Because the running MWZ method is

a sensitive and robust way of detecting IMD climate re-

gimes, the ZE series provide a correspondingly sensitive

way of contrasting modeled and observed climate pat-

terns of behavior. However, because this process tests

rankings, it gives no information about magnitude-

related errors (e.g., biases in the means or variances of

modeled climate data relative to observations). Such bia-

ses would have to be identified through a complementary

statistical analysis [e.g., the method of Lambert and Boer

(2001) or Taylor (2001)].

Although the NCAR Parallel Climate Model (PCM)

produces the lowest FM value, the three model’s IMD

temperature patterns in Figs. 6a–c are generally similar

during 1919–2008. That is, although the models either re-

produce the PC1 mode of U.S. temperature shown in Figs.

3a,c, or show trendlike behavior, none reproduces the

cyclic PC2 mode of Figs. 3b,d. Based on modeling sim-

ulations with forcing scenarios that included observed

SST, Robinson et al. (2002) proposed that eastern U.S.

cooling during 1951–97 was the consequence of warming

tropical Pacific SST and the associated increased cloud

cover. Although this might explain the PC2 mode’s cool

regime, their simulations did not consider the multidecadal

temperature cycle of which that cool period was a part.

Even so, as the FGOALS, MIROC, and PCM 20C3M

coupled model runs were not initialized with observed

SST, their results suggest that the model’s failure to

generate the PC2 temperature cycle might be due to

an inability to reproduce the correct oceanic boundary

forcing. Of course, as noted in section 1, it is unsurprising

that 20C3M model runs initialized by model-generated

preindustrial boundary conditions might fail to generate

the observed Pacific SST in the latter half of the twen-

tieth century. However, some of the proposed CMIP-5

30-yr hindcast experiments will be initialized with ob-

served ocean state and sea ice conditions in 1960 and

1980 (Taylor et al. 2008; Meehl et al. 2009). With the

addition of natural and anthropogenic radiative bound-

ary forcings, those experiments might be expected to re-

produce observed IMD regimes in SST and the associated

climate effects during those 30-yr time windows. With

some modifications (e.g., limiting the sampling windows

to 6–15-yr duration), the graphic analysis method and

MAZE and FM metrics described here could be used

to test the CMIP-5 model’s ability to reproduce those

effects.

Developing models that reproduce the decadal fea-

tures of historical climate may be an important first step

in producing useful projections of future decadal climate.

Such work may depend, in turn, on sensitive diagnostic

methods that can help to identify and troubleshoot the

shortcomings of current models and initialization schemes.

Given its ability to compare observed and modeled IMD

climate regimes at a model’s grid resolution, the running

MWZ method may be used as in Fig. 6, that is, as a di-

agnostic tool to show a model’s space–time response to

specified initial conditions and full forcing and compare

that response with observations. This demonstration eval-

uated U.S. surface temperatures, but the method could be

used with any climate variable that provides reliable ob-

served values at a model’s grid resolution. For example,

Latif et al. (2004, 2010) cite the North Atlantic as an area

of strong and potentially predictable decadal climate

variation. Thus, modeled SST anomaly values might be

compared with gridded reanalysis values (e.g., Kaplan

et al. 1998) over that ocean basin. The method might

also be adapted to current detection and attribution

techniques (e.g., Zwiers and Zhang, 2003; Santer et al.

2003; Zhang et al. 2006; Lee et al. 2006; Hegerl et al.

2007) to calculate grid resolution response patterns for

various climate forcings, and then solve for the combi-

nation of those responses that yield the lowest FM value.

Patterns of anthropogenically forced and natural decadal

variabilities might be estimated by comparing response

patterns in initialized and uninitialized hindcast experi-

ments (Solomon et al. 2011). As climate change caused

by increasing CO2 levels in the coming decades may be
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modulated by natural decadal climate variability (Smith

et al. 2007; Keenlyside et al. 2008; Ting et al. 2009; Hurrell

et al. 2010; Semenov et al. 2010), such analysis might aid

in developing models that respond correctly to anthro-

pogenic and natural forcing, and combinations of those

forcings.
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FIG. A1. MWZ series for five 90-yr artificial temperature records modeled after the Fig. 2a

SATMP temperature series. Black and gray traces show Z series as in Fig. 2e, dashed traces

show idealized climate signals, and the bar values show the sum of the those climate signals and

AR(3) noise processes. (a) Regular harmonic cycle with a 45-yr period. (b) As in (a), but with

phase retarded by p/2. (c) Alternating cyclic regimes with increasing periods of t1 5 20 yr, t2 5

30 yr, and t3 5 40 yr. (d) As in (c), but with the sequence of the cyclic regimes reordered as t3–

t1–t2. (e) A linearly increasing temperature signal during 1919–2008.
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APPENDIX

Artificial Temperature Time Series Tests

To demonstrate the running MWZ method’s general

ability to resolve varying climate signals, Figs. A1a–e

shows the Z series that result when the method is ap-

plied to time series with known signal and noise char-

acteristics. These series consist of autoregressive (AR)

noise processes that have been added to idealized low-

frequency climate signals to form five artificial 90-yr

temperature records. The Fig. A1 series are modeled

after the Fig. 2 southern Alabama temperature (SATMP)

time series, which is reproduced in Fig. A2a. To define

a ratio of low-frequency signal variance to AR noise

variance in the artificial series similar to that of the

SATMP series, the SATMP series was first subjected to

a low-pass Lanczos filter (Duchon 1979). As the shortest

window used in the running MWZ sampling is 6 yr, with

a corresponding cyclic period of ;12 yr, this filter was

assigned a half-power cutoff frequency of n 5 1021 yr.

The variance of the SATMP low-frequency component,

shown in gray in Fig. A2a, is 0.1248C2, while the variance

of the high-pass residual series (Fig. A2b) is 0.2078C2.

The ratio of the variance of the artificial low-frequency

signals (the dashed traces in Figs. A1a–e) to the variance

of the series’ AR noise component was thus set to 0.600

in each of the examples by adjusting the AR processes’

variance. This signal-to-noise (s–n) ratio is an important

factor in determining whether the method can ‘‘find’’

the signals in these artificial series; higher ratios ensure

success, while higher AR noise variance and lower ratios

obscure the signal and ensure failure. The s-n ratios for the

annual temperature series at the 92 grid locations in Fig. 4b

range between 0.282 and 1.04, with a median value of

0.502. The 0.600 s–n ratio used in the Fig. A1 tests is thus

above the median, but not unrepresentative. The AR

noise processes added to the artificial signals were formed

using an AR(3) model, as that model yielded the mini-

mum Akaike information criteria score (Akaike 1974) in

modeling the Fig. A2b high-pass residual series as AR(1),

AR(2), and AR(3) processes.

Figure A1a shows the Z trace for a 45-yr harmonic

temperature signal with a mean equal to that of the

SATMP series (18.08C), while Fig. A1b shows the Z

trace for the same signal retarded in phase by p/2. The

general similarity of those figures’ cyclic Z traces to their

corresponding idealized climate signals, and the retarded

phase of the Fig. A1b Z series, shows the method’s ability

to detect the existence and phase of smoothly varying

cyclic variation. Figure A1c shows the Z trace resulting

from a signal consisting of three abrupt cyclic regimes

with increasing periods of t1 5 20 yr, t2 5 30 yr, and

t3 5 40 yr. Figure A1d repeats the test of Fig. A1c,

but with the ordering of the three temperature cycles

changed to a t3–t1–t2 sequence. Although random number

generator initialization and/or low s-n ratios can pre-

vent the detection of the temperature signal in these

tests, the method is generally successful in identifying

the Fig. A1c regime signals and the rearranged signals in

Fig. A1d. This demonstrates an ability to detect abrupt

climate regimes of varying duration and arbitrary onset.

However, the similarity in the abrupt shifts between signif-

icant positive and negative Z series values in Figs. A1a–d

shows the approach is not effective at detecting the differ-

ence between smoothly harmonic and abruptly transitional

cyclic patterns of behavior. Figure A1e shows the Z series

that results from a linear increase in the temperature

FIG. A2. (a) SATMP series of annual temperature as in Fig. 2a. Gray trace shows the series’

low-frequency component (n , 1021 yr) as defined by a low-pass Lanczos filter. (b) High-pass

residual series derived from subtracting the SATMP low-frequency component from the an-

nual SATMP values.
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signal with the same magnitude as the Figs. A1c,d

regime changes. Thus, the linear trend Z signature un-

der the 0.600 s–n conditions consists of the most sig-

nificant Z statistics occurring with opposite sign at the

beginning and end of a time series, separated by periods

of gradually decreasing significance. As the s–n ratio is

decreased in these trend tests, the significance of the cool

and warm periods at the series’ beginning and end de-

creases, and midperiod Z values become insignificant.
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