Skip to main content
Article
Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR
Journal of Quantitative Spectroscopy & Radiative Transfer (2013)
  • Et-touhami Es-sebbar
  • Yves Benilan
  • Aamir Farooq
Abstract

Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296–529 K. The VUV measurements are performed between 115 and 205 nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25 μm (∼6500–400 cm−1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A′→X1A′) around 150–205 nm is determined to be 0.32±0.01. The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03 kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets.

Publication Date
Fall January 1, 2013
Citation Information
Et-touhami Es-sebbar, Yves Benilan and Aamir Farooq. "Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR" Journal of Quantitative Spectroscopy & Radiative Transfer Vol. 115 (2013)
Available at: http://works.bepress.com/et-touhami_es-sebbar/46/