
University of Massachusetts Amherst

From the SelectedWorks of Erik G Learned-Miller

2011

Enforcing similarity constraints with integer
programming for better scene text recognition
David L. Smith
Jacqueline Feild
Erik G Learned-Miller, University of Massachusetts - Amherst

Available at: https://works.bepress.com/erik_learned_miller/51/

http://www.umass.edu
https://works.bepress.com/erik_learned_miller/
https://works.bepress.com/erik_learned_miller/51/

Enforcing Similarity Constraints with Integer Programming
for Better Scene Text Recognition

David L. Smith Jacqueline Feild
Department of Computer Science

University of Massachusetts Amherst
Amherst MA, 01003

{dlsmith,jfeild,elm}@cs.umass.edu

Erik Learned-Miller

Abstract

The recognition of text in everyday scenes is made dif-
ficult by viewing conditions, unusual fonts, and lack of lin-
guistic context. Most methods integrate a priori appear-
ance information and some sort of hard or soft constraint
on the allowable strings. Weinman and Learned-Miller [14]
showed that the similarity among characters, as a supple-
ment to the appearance of the characters with respect to
a model, could be used to improve scene text recognition.
In this work, we make further improvements to scene text
recognition by taking a novel approach to the incorpora-
tion of similarity. In particular, we train a similarity expert
that learns to classify each pair of characters as equivalent
or not. After removing logical inconsistencies in an equiv-
alence graph, we formulate the search for the maximum
likelihood interpretation of a sign as an integer program.
We incorporate the equivalence information as constraints
in the integer program and build an optimization criterion
out of appearance features and character bigrams. Finally,
we take the optimal solution from the integer program, and
compare all “nearby” solutions using a probability model
for strings derived from search engine queries. We demon-
strate word error reductions of more than 30% relative to
previous methods on the same data set.

1. Introduction

Scene text recognition, the recognition of arbitrary text
in the environment, such as grocery carton labels, license
plates, and business placards, is a surprisingly difficult
problem. Relative to the more structured recognition of text
from machine-printed documents, known as optical charac-
ter recognition (OCR), scene text recognition is more dif-
ficult for several reasons. First, viewing angle and lighting
are typically not carefully controlled. Second, there is usu-
ally very little linguistic context, making it more difficult

to apply sophisticated language models. Third, since most
signage and other environmental text is just a few words in
length, it is difficult to benefit from repeated occurrences
of the same symbol to help decode a letter. For example,
in a long document, the most common symbol is usually
the letter “e”, but in a road sign, any letter could be most
common. This makes it difficult to use cryptographic tech-
niques [13, 3, 2, 4, 18]. Finally, many signs are meant to be
eye-catching, and are for this reason designed with stylized,
whimsical, or otherwise unusual fonts for which we are un-
likely to have matching training data. In other words, the
scene text recognition task frequently requires interpreting
versions of letters and digits that are significantly different
than those seen in training. All of these factors collude to
help this problem stubbornly resist resolution.

Despite its difficulty, there have been many approaches
developed for scene text recognition [8, 22, 9, 23, 24, 19, 7].
We believe it is critical to use as many sources of informa-
tion as possible, and to integrate them in a unified decision
process (see, e.g. [23]). Two obvious sources of informa-
tion are prior models of the appearance of each character,
and prior models of the likelihood of each character string.
These models can be learned using traditional vision tech-
niques (for the appearance models), and statistical language
modeling techniques, such as letter bigram models, letter
trigram models, frequency-weighted dictionaries, or some
combination of these techniques.

Another less obvious source of information is found in
the similarity and dissimilarity between pairs of characters.
As discussed by Weinman and Learned-Miller [14], a tra-
ditionally built scene text recognition system using only the
two a priori sources of information above may well con-
clude that two characters which have nearly identical ap-
pearance have different labels. When there is high ambi-
guity in the label due to appearance, language information
may “tip” the label for one character toward one letter and
“tip” the other character toward another letter. A person

73

Figure 1. An example sign from the data set. Due to the specialized
font, the character ‘A’ is particularly difficult to recognize.

will usually conclude, however, that two characters which
appear highly similar must represent the same letter within
a particular sign. This comes from the knowledge that while
characters may vary in appearance across fonts, most signs
use a consistent or small set of fonts, and within a single
font, we expect consistency of character appearance.

1.1. Prior work in similarity

Weinman et al. [14, 23] successfully incorporated simi-
larity for the scene text recognition problem in the follow-
ing way. First, a raw similarity score was computed for each
pair of characters A and B by computing

1− fA · fB , (1)

where fA and fB were unit feature vectors for the characters
A and B. This yields a number between 0 (when the vec-
tors are identical) and 2 (when the vectors point in opposite
directions) which is then put through a learned monotonic
non-linearity. This similarity score was then used to define
factors between each pair of characters in a factor graph,
and integrated into a general belief propagation framework
using other types of appearance and language information.

While the similarity score in Eq. (1) encodes some im-
portant information about similarity, our hypothesis was
that by learning a more flexible function that was special-
ized to evaluate the similarity of two characters, we could
develop a better score, and that this score would lead to
better recognition rates. Recent work in the face verifica-
tion problem [11, 15] has shown relatively high accuracy
rates in determining whether two faces are of the same per-
son or not, a problem much more difficult than determining
whether two characters represent the same letter in the same
font under natural viewing conditions.

This motivated us to return to the use of similarity in
scene text recognition and see if we could do more. We
started by assuming we had an oracle to tell us, for each
pair of characters in a sign, whether they had the same label.
We would then refuse to accept solutions that violated the
constraints of the oracle. We viewed this as an upper bound
on the benefit for word accuracy that we could get from es-
timated similarity information. Surprisingly, we were able
to achieve nearly the same result by estimating similarity as
by using the oracle-based similarity.

The system we used to achieve this result was designed
as follows.

1. First, we trained a similarity expert to classify pairs of
characters as same or different.

2. We then formulated the scene text recognition prob-
lem as an integer program. The optimization crite-
rion of the integer program is a log likelihood derived
from appearance features for each character class and
bigram probabilities governing the likelihood of char-
acter transitions. The same or different classifications
from the similarity expert are used as additional con-
straints in the integer program.

3. After running the integer program to find an approxi-
mate solution, we use a search engine to define an im-
plicit probability distribution over strings that are close
to this solution, and reevaluate these strings using a
separate model.

These techniques together lead to a significant improvement
in performance on a data set that has previously been used
to study the scene text recognition problem.

The remainder of the paper is structured as follows. In
Section 2, we discuss our method for evaluating the simi-
larity of character pairs. In Section 3, we discuss our for-
mulation of the scene text recognition problem as an integer
program, including the criterion of optimization, and using
equivalence and differences of character pairs as constraints
in the integer program. In Section 4, we present a method of
using a search engine to correct some errors in the signs in
our database, similar to the work of others [20, 10]. In Sec-
tion 5 we detail our experiments, and present results. We
conclude with a discussion in Section 6 about how the tech-
niques used in this work might be combined with methods
used previously by other authors.

2. Similarity
Figure 1 shows one of the signs used in our experiments.

Since it is unreasonable to expect a pre-trained character
recognizer to correctly identify the triangles as capital As,
it is very helpful to at least establish the equivalence of these
characters. In that case, a search over a single label for both
characters that satisfies reasonable case transitions, bigram
probabilities, and language constraints is much more likely
to be fruitful. Toward this end, it is important to have an
accurate and robust way of identifying whether characters
are equivalent (i.e. whether they have the same label) or not.

Our goal is to create a classifier that takes two character
images as input and predicts whether the characters should
have the same label. As discussed in Section 3.2, we choose
to use an integer program to perform our search over pos-
sible interpretations of a sign. We incorporate similarity
information via hard constraints in our integer program. We
can contrast this with previous approaches that used belief
propagation and “soft” similarity information. In general,

74

solving an integer program is an NP-hard problem, but in
practice our problem instances are small enough that we
can solve them efficiently. This allows us to guarantee a
solution that is optimal with respect to adjustable numerical
tolerances (discussed in Section 3.3). On the other hand,
loopy belief propagation is an approximate inference tech-
nique that is neither guaranteed to converge, nor to find the
optimal solution. Our use of “hard” equivalence informa-
tion could be viewed as a weakness, in that it does not allow
for poor estimates of equivalence to be overcome. We have
two methods for recovering from incorrect classifications
of equivalence, which are discussed in Sections 3.4 and 4.
Since we can recover from errors, the disadvantage of using
a “hard” decision is mitigated.

We developed our general approach using a subset of the
ICDAR 2003 Robust OCR Dataset1 [17] as training data.
This allowed us to explore a wide range of methods for
classifying equivalence and to experiment with parameter
values. In our actual tests, we retrained the best methods
on portions of our evaluation set using a cross-validation
scheme. This is discussed in more detail in Section 5.

To ensure that the distribution of image characteristics
in the ICDAR data was similar to our evaluation test set,
we created a subset by removing images with significantly
lower resolution or lower contrast than the poorest quality
images in our test set.

2.1. Building a similarity expert

Our equivalence classifier is a support vector machine
(SVM) [5, 6, 12] trained on a set of feature vectors extracted
from pairs of character images. Each pair of characters is
labeled as equivalent or different.

The features of the character images are formed using the
following process. For each pair of characters, we standard-
ize their size by taking the maximum of the width and height
of both images. We then resize both images to be square im-
ages of this size. Next, we normalize the intensities of each
image by scaling them to fill the range of the image, ignor-
ing a small percentage from both extremes to account for
outliers. We then extract one SIFT descriptor [16, 21] from
each image by placing it in the center of the image, scaled
to cover the entire image size.

We form two feature vectors for each pair of images.
One is created by subtracting the SIFT descriptor of the first
image from the second and the other is created by subtract-
ing the SIFT descriptor of the second image from the first.
We append the ratios of the original image widths and the
original image heights to both difference descriptors. We
add these additional features because they are good predic-
tors of dissimilarity. If two images vary significantly in their
original size, then they are more likely to have different la-
bels than two images with similar sizes.

1http://algoval.essex.ac.uk/icdar/Datasets.html

(a) Equivalent image pairs that are classified as different. Problems giving
difficulty to the similarity classifier include 3-dimensional layering effects
(left), perspective distortion (center), and lighting effects (right).

(b) Different image pairs that are classified as equivalent. The leftmost pair
represents a capital S and a lowercase s, which are considered to be different
according to our evaluation criterion.

Figure 2. Examples of classification errors made by the similarity
classifier using four SIFT descriptors.

For each pair of training images A and B, we then end
up with two training sample vectors: f(A,B) and f(B,A),
where f is the augmented SIFT vector described above.
While we use both feature vectors in training, at test time
we use only the first to represent a pair of images.

We also create an alternate version of this classifier by
using the same process, except extracting a two by two non-
overlapping grid of four SIFT descriptors from each image
rather than a single SIFT descriptor.

We use five-fold cross validation to evaluate this clas-
sifier on the test data (which is further described in Sec-
tion 5).2 We extract all pairs of same and different images
originating from the same sign from the data set and divide
them into five groups, making sure that all pairs from the
same sign are in the same group. We train an SVM with a
quadratic kernel using four of the folds as the training set
and one fold as the test set.

The result is a classification for each of the 10,290 pairs
of similar and dissimilar characters in the test set. Using
the classifier with one SIFT descriptor we correctly classify
10,215 pairs for an accuracy of 99.27%. Using the classi-
fier with four SIFT descriptors, we correctly classify 10,230
pairs for an accuracy of 99.42%. Examples of classification
errors made by the classifier using four SIFT descriptors are
shown in Figure 2.

While we achieve over 99% accuracy for our equiva-
lence classification for both types of features. This result
is not quite as great as it sounds. In particular, for each
string of words with k characters in our sign database, there

2One must take care in using cross-validation methods on an evaluation
data set not to “cheat” by adapting parameters through multiple runs or us-
ing multiple runs on the test data to evaluate a wide variety of different
algorithms. Put simply, it is important that no element of the evaluation
data be used to set a parameter which is ultimately used in its own evalua-
tion. We assiduously avoid this situation. In other words, we do not “train
on the test data”.

75

are O(k2) similarity comparisons. Since we are making
hard decisions about equivalence, an error in any one of
these O(k2) equivalence determinations would result in at
least one incorrect word coming out of our integer program.
While we mitigate this problem to some extent by elimi-
nating equivalence constraints which are inconsistent with
each other (discussed in Section 3.4), our IP accuracy is
still highly sensitive to errors in equivalence determination.
Thus, the error rate needs to be extremely low for this source
of information to be helpful. As we shall see, the similarity
information, even with some errors, does indeed improve
the accuracy of our integer program (see Table 1). With
our second processing step using search engine correction,
it proves even more helpful.

3. Maximum Posterior Probability Via Integer
Programs

Like many other authors, we take a probabilistic ap-
proach to recognition, finding the interpretation of a sign
that maximizes the conditional probability of the labels
given the observations. Given a set of N character image
observations x = {x1, x2, . . . , xN}, our task in recognition
is to assign the best set of labels y = {y1, y2, . . . , yN} for
these characters subject to a set of consistent equivalence
and difference constraints C. That is, we want to compute

y∗ = argmax
y

p(y|x) = argmax
y

p(y,x) (2)

subject to C. For our initial IP evaluation, we assume
a Markov model over the labels,3 leading us to express
p(y,x) as4

p(y,x) =

N∏
i=1

p(xi|yi)
N∏
i=1

p(yi|yi−1). (3)

Rather than maximizing Eq. 3, we can equivalently mini-
mize its negative log. Thus,

y∗ = argmin
y

−
N∑
i=1

log p(xi|yi)−
N∑
i=1

log p(yi|yi−1).

(4)

Let A denote our alphabet. For simplicity, let φi:j =
− log p(xi|yi = Aj), the negative log probability that
character i takes on the label Aj . Similarly we will let
φi(i+1):jk = − log p(yi+1 = Ak|yi = Aj), the negative
log probability that character i takes on the label Aj and

3Later in processing, we will replace our Markov model over strings
with a more complex model.

4Here we write the prior probability p(y1) of the first term as p(y1|y0)
for notational simplicity.

character i + 1 takes on the label Ak. Using this notation,
we have

y∗ = argmin
y

N∑
i=1

φi:j +

N−1∑
i=1

φi(i+1):jk. (5)

3.1. Features

Our appearance features were developed by training
class conditional weights over a vector of edge-like features.
The weights were trained to maximize the classification per-
formance on a set of synthetic fonts. These appearance fea-
tures were given to us precomputed from the authors of [14]
with minimal modifications.

Our pairwise language features combine bigram and case
transition statistics. The bigram statistics were trained on
a selection of books from Project Gutenberg. Inter-word
case change statistics (i.e. changing from upper to lower or
lower to upper) were trained on the press-related sections
of the Brown Corpus of American English.5 For the first
transition, we assume a uniform probability of transitioning
from upper case to lower case and upper case to upper case.
We now show how to express the optimization in Eq. (2) as
an integer program.

3.2. Integer program formalization

An integer program (IP) is an optimization problem of
a linear objective function over integer-valued variables y,
where the space of solutions is bounded by a set of linear
constraints. The goal is to find the assignment to these vari-
ables that minimizes the objective function. An IP in stan-
dard form [1] is written

minimize cTy (6)
subject to Ay = b (7)

y ≥ 0 (8)
y ∈ Zn, (9)

where c ∈ Rn,b ∈ Rm, A ∈ Rm × Rn, and Z is the inte-
gers. Here we are now using y to denote the set of variables
in the optimization criterion, rather than the set of labels for
our characters. The connection between these uses will be-
come clear below. We will solve our optimization problem
by posing it as an IP6 over binary valued variables.

Using the notation defined for Eq. (5), let yi:j = 1 if
variable yi = Aj and 0 otherwise. Let yi(i+1):jk = 1 if

5http://icame.uib.no/brown/bcm.html.
6We chose to represent our IP in non-standard form. In standard form,

all constraint types (with the exception of the non-negativity constraints)
are expressed as equalities, whereas for clarity, we expressed one of our
constraints as an inequality. However, one can easily convert to and from
equality and inequality constraints by introducing additional constraints or
slack variables. See [1] for more details.

76

variables yi = Aj and yi+1 = Ak and yi(i+1):jk = 0 other-
wise. Our optimization problem from Eq. (5) (before inte-
grating the equivalence and non-equivalence constraints C)
can then be written

minimize
N∑
i=1

|A|∑
j=1

φi:jyi:j +

N−1∑
i=1

|A|∑
j=1

|A|∑
k=1

φi(i+1):jkyi(i+1):jk

(10)

subject to
|A|∑
j=1

yi:j = 1 (11)

|A|∑
k=1

yi(i+1):jk = yi:j (12)

|A|∑
j=1

yi(i+1):jk = y(i+1):k (13)

yi:j , yi(i+1):jk ≥ 0 (14)
yi:j , yi(i+1):jk ∈ Z. (15)

Eq. (11) ensures that we choose exactly one label for each
character. Eqs. (12) and (13) ensure that we choose ex-
actly one pairwise factor for each pair of characters and en-
force consistency between assignments. Lastly Ineq. (14)
and Eq. (15) ensure that our variables are restricted to non-
negative integers.

We will enforce the equivalence and non-equivalence
constraints C as follows. Let C = {Cs, Cd}, where Cs
is the set of equivalence constraints and Cd is the set of
non-equivalence constraints. In order to enforce these con-
straints, we add the following to our IP constraint set:

yi:j − yi′:j = 0,∀(i, i′) ∈ Cs (16)
yi:j + yi′:j ≤ 1,∀(i, i′) ∈ Cd (17)

The equivalence constraints expressed in Eq. (16) enforce
that whenever either yi:j or yi′:j is set to 1, the other must be
set to 1 as well. The non-equivalence constraints expressed
in Ineq. (17) enforce that both yi:j and yi′:j cannot be set to
1 at the same time. Note that non-equivalence constraints
such as (17) can be incorporated into an IP in standard form
by including both the constraint and its negation.

3.3. Optimization considerations

We use the Mosek7 optimization toolbox, which uses a
variant of the branch-and-cut method, to efficiently solve
our integer programs. Branch-and-cut works by first re-
laxing the integer program to a linear program. The op-
timization proceeds, eliminating non-integral solutions by
adding constraints that remove these solutions from consid-
eration. Once no more constraints can be added, the opti-

7http://mosek.com/

mization uses the branch and bound strategy, which incre-
mentally adds integer constraints on the variables. A branch
in the optimization tree corresponds to choosing 0 or 1 for a
specific variable. A lower bound on the optimization crite-
rion is maintained by checking conditions on LP relaxations
solved throughout the algorithm. An upper bound is main-
tained by noting the cases where the solution to an LP relax-
ation has binary values. These bounds allow the algorithm
to prune subtrees of the optimization. For more information
on linear optimization, see [1].

The Mosek solver uses finite error tolerances on both the
integer feasibility and the optimization criterion in order to
improve performance. Therefore, we do not have a formal
guarantee of optimality. In our experiments, the solver’s
optimum was always the true optimum.8

3.4. Handling inconsistent constraints

If we assume ground-truth equivalence and non-
equivalence constraints, our optimization space is guaran-
teed to be feasible. When we estimate equivalence and non-
equivalence, we need to ensure that our constraints are con-
sistent. For example, suppose we estimate that characters i
and j are equivalent, characters j and k are equivalent, and
characters i and k are different. These constraints are con-
tradictory and hence there is no solution that satisfies them.
We resolve this by removing constraints that violate consis-
tency. An example of this scenario is shown in Figure 3.

Figure 3. An example of inconsistent constraints. The similarity
classifier labels i and j as equivalent, j and k as equivalent, but
i and k as different. Through transitivity we know that i should
be equivalent to k, which is inconsistent with the classifier out-
put. In order to make our constraints consistent, we remove the
constraints associated with this clique.

The root of this problem is that under certain conflicting
constraints, we can determine that two characters should be
equivalent through transitivity (i.e. i = j = k), and this
equivalence conflicts with a non-equivalence constraint. To
detect such a conflict, we compute a graph over characters,

8Here the true optimum refers to the best solution with respect to the
optimization criterion, not necessarily to the correct solution.

77

where the graph contains an edge between characters i and
j if i and j are equivalent under transitivity. All connected
components of this graph will be fully connected. If we
find that we have included an edge between two nodes that
we have estimated to be different, we have a conflict. We
can remove this conflict by removing all constraints in the
relevant clique.

4. Error Correction
The final stage of recognition involves using information

from a search engine9 to incorporate language statistics that
are more global than our bigram model. We use search en-
gine results to model the distribution of common strings, as
in [10]. We incorporate these results as follows.

Given a labeling hinit from our IP optimization, we cre-
ate a set of 1-character substitutions of hinit over all char-
acters in our alphabetA. We add to this set any suggestions
made by the search engine when these candidate strings are
submitted to the search engine. This results in a set of hy-
potheses H for the true string. For each h ∈ H, we record
the number of hits from the search engine. We induce a
probability distribution pH(h) over H by normalizing the
search hit counts with add-1 smoothing.

Rather than relying solely on search hit counts to correct
errors in hinit, we wanted to combine this information with
appearance information px(h) to produce a final probabil-
ity for each h. If px and pH are both probabilities, we could
assume independence and multiply them together. How-
ever, as occurs frequently when combining language mod-
els with appearance models, these two distributions were
“imbalanced” in the sense that the appearance term domi-
nated the product, rendering pH useless. To address this,
we introduced a correction factor α to balance the terms:

f(h) = px(h)
α · pH(h)(1−α), (18)

for 0 ≤ α ≤ 1. We compute px by evaluating each hy-
pothesis h ∈ H according to a linear function in the form
of Eq. (10), with bigram factors removed, and then normal-
izing. We remove the bigram factors to rely solely on lan-
guage information from the search engine. After setting α
on held out data (Section 5), the best hypothesis h∗ ∈ H is
simply the one maximizing Eq. (18).

5. Experiments and Results
In this section, we first describe the data sets we used

for training and evaluating results. We discuss in detail our
cross-validation scheme which allows us to use the same
data for training and testing by using different folds. We
report results for a variety of experiments that compare ac-
curacies of sign recognition with no similarity, with esti-
mated similarity, and with ground truth similarity as given

9http://www.bing.com/

IP Solution IP Solution
without Equivalence with Equivalence

Information Information
Via Wia Via Via

KELLOGE KELLOGG
ALAN N SHAREE ALAN N SHARPE

Figure 4. Sample signs from the data set where equivalence or
difference information improves recognition performance. The
first two examples show how equivalence information can improve
recognition while the third example shows how difference infor-
mation can improve performance.

by an oracle. We report accuracies with and without post-
processing using the search engine-based language model.

5.1. Data sets

There are a variety of data sets that have been used in
work on scene text recognition. These include the sign data
set of Weinman and Learned-Miller [14], the ICDAR read-
ing competition data set [17], and others [8, 22, 9]. We
chose to use the data set of Weinman and Learned-Miller
[14] to evaluate our algorithms because a consistent body
of work has been evaluated on this data set. We shall refer
to this data set as the WLM data set. As discussed above, we
also used the ICDAR data set as a source of exploratory data
for our initial experiments on equivalence classification.

The WLM data set, obtained from the original authors,
consists of 95 signs with a total of 215 words and 1209
printable characters, including digits, lowercase letters, and
uppercase letters. The average number of words per sign
is 2.26 and the average number of letters per word is 5.62.
While scene text recognition requires finding text in an im-
age, possibly segmenting it, and finally recognizing, we
adopted a common simplification by starting with hand seg-
mentations of each character in the form of a rectangular
bounding box. This is a substantial simplification of the full
scene text recognition problem, and the difficulty of solving
the initial stages of detection and segmentation should not
be underestimated. Nevertheless, we felt we could better
assess our contributions by deferring the solution of these
initial stages. We compare results to others that have made
the same assumptions.

5.2. Cross validation

While we developed the general form of our similarity
expert using the ICDAR data, after we settled on the form
of our model, we wanted to adapt the parameters (for the

78

No error correction Error Correction
No Similarity Word Accuracy 75.35 88.37

Char. Accuracy 91.81 94.21
Similarity Classifier Word Accuracy 78.60 92.56
(1 SIFT feature) Char. Accuracy 93.05 96.20
Similarity Classifier Word Accuracy 78.60 92.56
(4 SIFT features) Char. Accuracy 93.30 96.28
Ground Truth Word Accuracy 83.72 93.02
Similarity Char. Accuracy 94.46 96.44

Table 1. A table of word and character accuracies for each experiment. Results are shown with and without error correction.

similarity SVM and the α parameter for balancing appear-
ance and language information in the IP) to the properties
of the WLM data set. To do this, we split the WLM data set
into five folds of approximately the same size. No charac-
ters from a single sign appeared in more than one fold. The
reason for avoiding having some characters from a sign go
into one fold and some go into another is that this would
make the similarity classification artificially easy, since the
training data and test data might have pairs of characters
that were virtually equivalent.

After splitting the WLM data into five folds, we used
four folds for training the similarity SVM and used this
SVM to rate all of the pairs in the other fold as equivalent
or different. This resulted in five independent sets of esti-
mated equivalences and differences. Again using four folds
at a time for training, we estimated the parameter α from
Eq. (18). We then solved the IP for the test fold and applied
the error correction procedure of Section 4, often resulting
in dramatic increases in word accuracy.

Table 1 shows a variety of results, compiled across folds,
for word accuracy and character accuracy. Word accuracy is
simply the percentage of words that are completely correct,
including the proper case. A single character error, even if
just a case disagreement, renders a word incorrect.

We show an improvement in word recognition accuracy
due to similarity. With and without error correction we at-
tain larger than 3% improvement in word accuracy over the
equivalent method with similarity removed. Our best result
of 92.56% achieves close to the same accuracy as our tech-
nique using ground-truth similarity. Furthermore, this result
is higher than the state of the art result of 86.05% reported
in [14]. See Figure 4 for examples of cases where the use
of equivalence information improved performance.

6. Discussion
Perhaps the most immediate question about our results

is what caused the improvement? It is tempting to con-
clude that our large gain in performance was due only to
the search engine-based correction. However, a closer ex-
amination suggests that we are squeezing more information

out of similarity than was demonstrated in previous work.

In particular, in previous work [23], it is shown that simi-
larity can be beneficial when there is a poor language model,
but that when language information is added in the form
of a lexicon, the similarity information, as implemented, is
of little additional benefit. Specifically, without a dictio-
nary, similarity information increases word accuracy from
75.35% to 78.60%, for a gain of about 3.25%. But when a
lexicon is added, it seems to reduce the benefits of adding
similarity. With a lexicon, similarity raises the accuracy
only about 0.50%, from 85.58% to 86.05%.

However, in our work, even with the sophisticated
language model implicitly defined by the search engine
queries, we still see a 4% gain in word accuracy from adding
similarity: from 88.37% to 92.56%. It is interesting to
note that this occurs despite the significantly smaller gain in
character accuracy of about 2%. We hypothesize one rea-
son this may occur. If a word has exactly one error, and it
violates an equivalence constraint, then this constraint ef-
fectively forces the algorithm to choose a single label for
the equivalent characters. If the algorithm is correct in this
guess 50% of the time, then the character accuracy would
not change, but the word accuracy would be increased, since
some of the single error words would be converted to zero
errors, and others would be converted to two errors.

Despite this analysis, it is likely that the system of
Weinman et al. [23] would benefit significantly from post-
processing using the search engine technique. Hence, it is
difficult to conclude from our current experiments which
combination of components would lead to the best overall
system. In future work, we plan to systematically vary fac-
tors and study trade-offs between belief propagation with
soft equivalence constraints and integer programming with
hard equivalence constraints. We also believe that our simi-
larity results can be further improved by incorporating bet-
ter alignment algorithms before using our similarity expert.
In any case, at a word accuracy rate of 92.56%, we have
made a significant step forward, and we hope this will stim-
ulate further work on this difficult problem.

79

Acknowledgements
The authors thank Jerod Weinman for the precomputed fea-
ture data and several helpful discussions. J. Feild was sup-
ported by an NSF Graduate Research Fellowship. This
work was also supported by NIH grant 1R21EY018398-01.

References
[1] D. Bertsimas and J. N. Tsitsiklis. Introduction to Lin-

ear Optimization. Athena Scientific, 1997. 76, 77

[2] T. M. Breuel. Classification by probabilistic cluster-
ing. In Int. Conf. on Acoustics, Speech and Signal
Processing, 2001. 73

[3] T. M. Breuel. Modeling the sample distribution for
clustering OCR. In SPIE Conf. on Document Recog-
nition and Retrieval, 2001. 73

[4] T. M. Breuel. Character recognition by adaptive sta-
tistical similarity. In Int. Conf. on Document Analysis
and Recognition, 2003. 73

[5] C. J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121–167, 1998. 75

[6] C. Chang and C. Lin. LIBSVM: a library for
support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/˜cjlin/
libsvm. 75

[7] X. Chen, J. Yang, J. Zhang, and A. Waibel. Auto-
matic detection and recognition of signs from natu-
ral scenes. IEEE Transactions on Image Processing,
13(1):87–99, 2004. 73

[8] X. Chen and A. L. Yuille. Detecting and reading text in
natural scenes. In IEEE Computer Vision and Pattern
Recognition, pages 366–373, 2004. 73, 78

[9] T. E. De Campos, B. R. Babu, and M. Varma. Char-
acter recognition in natural images. In Int. Conf. on
Computer Vision Theory and Applications, 2009. 73,
78

[10] M. Donoser, H. Bischof, and S. Wagner. Using web
search engines to improve text recognition. In Int.
Conf. on Pattern Recognition, 2008. 74, 78

[11] M. Guillaumin, J. Verbeek, and C. Schmid. Is that
you? metric learning approaches for face identifica-
tion. In Int. Conf. on Computer Vision, 2009. 74

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten. The weka data mining soft-
ware: An update. In SIGKDD Explorations, Volume
11, Issue 1, 2009. 75

[13] J. D. Hobby and T. K. Ho. Enhancing degraded doc-
ument images via bitmap clustering and averaging.
In Int. Conf. on Document Analysis and Recognition,
1997. 73

[14] J.Weinman and E. G. Learned-Miller. Improving
recognition of novel input with similarity. In IEEE
Computer Vision and Pattern Recognition, volume 1,
pages 308–315, 2006. 73, 74, 76, 78, 79

[15] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K.
Nayar. Attribute and simile classifiers for face verifi-
cation. In Int. Conf. on Computer Vision, 2009. 74

[16] D. Lowe. Distinctive image features from scale-
invariant keypoints. Int. Journal of Computer Vision,
2003. 75

[17] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong,
and R. Young. Icdar 2003 robust reading competitions.
In Int. Conf. on Document Analysis and Recognition,
pages 682–687, 2003. 75, 78

[18] G. Nagy and S.Veeramachaneni. Adaptive and inter-
active approaches to document analysis. In Int. Conf.
on Document Analysis and Recognition, volume 2,
pages 629–633, 2007. 73

[19] Z. Saidane and C. Garcia. Automatic scene text recog-
nition using a convolutional neural network. In Int.
Workshop on Camera-Based Document Analysis and
Recognition, 2007. 73

[20] C. M. Strohmaier, C. Ringlstetter, K. U Schulz, and
S. Mihov. Lexical postcorrection of OCR-results: The
web as a dynamic secondary dictionary? In Int. Conf.
on Document Analysis and Recognition, 2003. 74

[21] A. Vedaldi and B. Fulkerson. VLFeat: An open
and portable library of computer vision algorithms.
http://www.vlfeat.org/, 2008. 75

[22] K. Wang and S. Belongie. Word Spotting in the
Wild. European Conference on Computer Vision,
pages 591–604, 2010. 73, 78

[23] J. Weinman, E. G. Learned-Miller, and A. Hanson.
Scene text recognition using similarity and a lexicon
with sparse belief propagation. IEEE Pattern Analysis
and Machine Intelligence, 2009. 73, 74, 79

[24] M. Yokobayashi and T. Wakahara. Segmentation and
recognition of characters in scene images using selec-
tive binarization in color space and GAT correlation.
In Document Analysis and Recognition, pages 167–
171. IEEE, 2005. 73

80

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.vlfeat.org/

	University of Massachusetts Amherst
	From the SelectedWorks of Erik G Learned-Miller
	2011

	Enforcing similarity constraints with integer programming for better scene text recognition
	tmpthQgxV.pdf

