Skip to main content
Article
Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions
Journal of Chemical Physics (2017)
  • Erik P Hoy, Rowan University
  • David A Mazziotti, University of Chicago
  • Tamar Seideman, Northwestern University
Abstract
Can an electronic device be constructed using only a single molecule? Since this question was first
asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green’s function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the
authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below those of B3LYP and M06 DFT functionals. This suggests that the NEGF-RDM method could be a viable alternative to NEGF-DFT for molecular junction calculations.

Keywords
  • Molecular Electronics,
  • Electron Transport,
  • Electronic Structure,
  • Quantum Chemistry,
  • Green's Functions
Publication Date
Fall November 13, 2017
DOI
https://doi.org/10.1063/1.4986804
Citation Information
Erik P Hoy, David A Mazziotti and Tamar Seideman. "Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions" Journal of Chemical Physics Vol. 147 (2017) p. 184110
Available at: http://works.bepress.com/erik-hoy/1/