Skip to main content
Article
Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles
Journal of Agricultural and Food Chemistry (2009)
  • Eric A. Decker, University of Massachusetts - Amherst
  • T. Helgason
  • T.S. Awad
  • K. Kristbergsson
  • D.J. McClements
  • J. Weiss
Abstract

The impact of surfactant type on the physical and chemical stability of solid lipid nanoparticle (SLN) suspensions containing encapsulated beta-carotene was investigated. Oil-in-water emulsions were formed by homogenizing 10% w/w lipid phase (1 mg/g beta-carotene in carrier lipid) and 90% w/w aqueous phase (surfactant + cosurfactant) at pH 7 and 75 degrees C and then cooling to 20 degrees C. The impact of surfactant type was investigated using aqueous phases containing different water-soluble surfactants [2.4% w/w high-melting (HM) lecithin, 2.4% w/w low-melting (LM) lecithin, and 1.4% w/w Tween 60 or 1.4% w/w Tween 80] and a cosurfactant (0.6% taurodeoxycholate). The impact of the physical state of the carrier lipid was investigated by using either a high melting point lipid (tripalmitin) to form solid particles or a low melting point lipid (medium chain triglycerides, MCT) to form liquid droplets. A higher fraction of alpha-crystals was detected in solid particles prepared with high-melting surfactants (HM-lecithin and Tween 60) than with low-melting surfactants (LM-lecithin and Tween 80). With the exception of the HM-lecithin-coated solid particles, the suspensions were stable to particle aggregation during 21 days of storage. beta-Carotene degradation after 21 days of storage was 11, 97, 100, and 91% in the solid particles (tripalmitin) and 16, 21, 95, and 90% in the liquid droplets (MCT) for HM-lecithin, LM-lecithin, Tween 80, and Tween 60, respectively. These results suggest that beta-carotene may be stabilized by (1) LM- or HM-lecithin when liquid carrier lipids are used and (2) HM-lecithin when solid carrier lipids are used. The origin of this latter effect is attributed to the impact of the surfactant tails on the generation of a crystal structure better suited to maintain the chemical stability of the encapsulated bioactive.

Disciplines
Publication Date
2009
Citation Information
Eric A. Decker, T. Helgason, T.S. Awad, K. Kristbergsson, et al.. "Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles" Journal of Agricultural and Food Chemistry Vol. 57 (2009)
Available at: http://works.bepress.com/eric_decker/31/