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Computing the optimal path in stochastic dynamical systems

Martha Bauver, Eric Forgoston,a) and Lora Billings
Department of Mathematical Sciences, Montclair State University, 1 Normal Avenue, Montclair,
New Jersey 07043, USA

(Received 7 January 2016; accepted 5 July 2016; published online 2 August 2016)

In stochastic systems, one is often interested in finding the optimal path that maximizes the

probability of escape from a metastable state or of switching between metastable states. Even for

simple systems, it may be impossible to find an analytic form of the optimal path, and in high-

dimensional systems, this is almost always the case. In this article, we formulate a constructive

methodology that is used to compute the optimal path numerically. The method utilizes finite-time

Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing

scheme. The method is applied to four examples. The first example is a two-dimensional system

that describes a single population with internal noise. This model has an analytical solution for the

optimal path. The numerical solution found using our computational method agrees well with the

analytical result. The second example is a more complicated four-dimensional system where our

numerical method must be used to find the optimal path. The third example, although a seemingly

simple two-dimensional system, demonstrates the success of our method in finding the optimal

path where other numerical methods are known to fail. In the fourth example, the optimal path lies

in six-dimensional space and demonstrates the power of our method in computing paths in higher-

dimensional spaces. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4958926]

Increasingly, stochastic dynamical systems are being

used to model a wide variety of physical and biological

phenomena. In these types of systems, one often sees rare

transition events that are induced by noise which may be

internal or external to the system. These noise-induced

rare events may be associated with a desirable outcome,

such as the extinction of an infectious disease outbreak,

or an undesirable outcome, such as the sudden clustering

of cancerous cells. One important feature of interest

when studying noise-induced transitions is the optimal

transition pathway of escape from a metastable state or

the optimal transition pathway from one metastable state

to another metastable state. Although there are many

paths, the optimal path is the path that is most likely to

occur. For most systems, it is impossible to analytically

determine the optimal path to escape or switch.

Therefore, the optimal path must be determined numeri-

cally. This article describes a novel methodology for com-

puting the optimal path in higher-dimensional systems,

where analytical results are not available. The methodol-

ogy uses finite-time Lyapunov exponents (FTLE) to pro-

vide an initial guess for use in an Iterative Action

Minimizing Method (IAMM) to compute the optimal

path in general stochastic systems subjected to internal

or external noise. Here, the methodology is demonstrated

using the Susceptible-Infectious-Susceptible (SIS) and

Susceptible-Exposed-Infectious-Recovered (SEIR) infec-

tious disease models and an Allee population model. Two

versions of the SIS model include a low-dimensional sin-

gle population example as well as a careful examination

in four dimensions using two populations. The SEIR

model demonstrates the extension of the method to six

dimensions. The Allee example represents a type of sys-

tem where other numerical methodologies are prone to

failure. Our methodology, although demonstrated with

epidemic and population models, may be used to compute

the optimal escape path from a metastable state or the

optimal switching path between metastable states for gen-

eral stochastic dynamical systems.

I. INTRODUCTION

It is well-known that noise can have a significant effect

on deterministic dynamical systems. As an example, given

an initial state starting in a basin of attraction, noise can

cause the initial state to cross the basin boundary and move

into another, distinct basin of attraction.1–5 Many researchers

have investigated how noise affects physical and biological

phenomena at a wide variety of levels. In these systems,

noise can induce spontaneous switching between coexisting

stable states. Two examples from physical systems are

switching between the magnetization states in magnets,6 and

voltage and current states in Josephson junctions.7 In biolo-

gy, noise can play a role in sub-cellular processes, tissue dy-

namics, large-scale population dynamics,8 and genetic

switching.9 Two examples of spontaneous switching be-

tween stable states in biological systems are extinction of an

epidemic and extinction of a species.10

Stochasticity manifests itself as either external or inter-

nal noise. External noise comes from a source outside the

system being considered (e.g., population growth under the

influence of climatic effects, or a random signal fed into a

transmission line), and often is modeled by replacing an ex-

ternal parameter with a random process. Internal noise is in-

herent in the system itself and is caused by the random
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interactions of discrete particles (e.g., individuals in a popu-

lation, or chemical reactions).11,12 Both types of noise can

lead to a rare switching event between metastable states or a

rare escape event from a metastable state. There are many

possible escape/switching paths, but there is a path along

which switching or escape is most likely to occur. We call

this most likely path of escape or switching the optimal path.

It is of great importance in a variety of applied problems to

determine this optimal path, since knowledge of the path

then enables the determination of the mean time to escape

from a metastable state or to switch from one metastable

state to another metastable state.

Mathematically, the effect of external noise is often de-

scribed using a Langevin equation or the associated

Fokker–Planck equation (though the dynamics of external

noise may sometimes be described by a master equation13).

Feynman noticed that each noise realization corresponds to a

particular trajectory of the system, and therefore, the proba-

bility density of realizations of trajectories is determined by

the probability density of noise realizations.14 This idea can

be used to formulate a variational problem that ultimately

leads to a Hamiltonian system. One can solve the

Hamiltonian, either analytically or numerically, for the most

probable, or optimal, path of escape or switching.11,12 The

effect of internal noise due to the random interactions of

individuals within the system is described mathematically

using a master equation.

The master equation is a large, or even infinite, set of

differential equations, and in general, it cannot be solved an-

alytically. Therefore, one must resort to using a

Wentzel–Kramers–Brillouin (WKB), or eikonal, approxima-

tion. The WKB method leads to the development of a

Hamiltonian system, which can be solved for the optimal

path.15–21

In summary, for either type of noise, the optimal path is

found by transforming the original stochastic problem into a

new deterministic system described by a Hamiltonian

Hðx; pÞ ¼ 0. The dimensions of the Hamiltonian are twice

the dimensions of the original system due to the conjugate

momenta variables p. The method amounts to finding a zero-

energy trajectory of an effective mechanical system, and at

least one of the solutions to the zero-energy Hamiltonian is

the optimal path. There may be other escape/switching/ex-

tinction paths, but the optimal path is the path that maxi-

mizes the probability of escape/switching/extinction. Even

for simple problems, the optimal path may not have an ana-

lytical solution. The numerical computation of the optimal

path trajectory has been achieved in the past using a shooting

or other iterative methods.22,23 However, since the procedure

is very sensitive to boundary conditions, it is difficult to im-

plement when analyzing paths far away from bifurcation

points.24,25 In Refs. 24 and 25, these numerical issues were

overcome by computing finite-time Lyapunov exponents

(FTLE). The method worked very well for low-dimensional

problems, but in high dimensional problems, the FTLE

results define a region on and around the optimal path, but

fail to describe the optimal path itself in the necessary detail.

In this article, we describe a novel methodology that

combines the use of two numerical methods to compute the

optimal path trajectory for high-dimensional models. The

method begins by computing finite-time Lyapunov expo-

nents. FTLE computations provide a measure of stretching

of initially close particles advected over a specified finite

amount of time. Ridges of high FTLE values are of great in-

terest, since it has been shown that a maximal FTLE ridge is

equivalent to the optimal path.24,25 Therefore, the FTLE pro-

vides a means to identify points in close proximity to the op-

timal path. We then use the FTLE results as an initial guess

for the second numerical scheme.

This second scheme is an Iterative Action Minimizing

Method (IAMM),26 which applies a Newton’s method pro-

cess to the initial guess provided by the FTLE result. The

IAMM is a minimum action method27,28 and provides a

method to converge rapidly to the optimal path. While the

method is rather straightforward, there are difficulties in

computing the trajectory of an unstable path in higher dimen-

sions which lead us to explore other factors that may be

influencing the computations. It is worth noting that in the

absence of a good initial condition, the IAMM may not con-

verge to the optimal path.

We illustrate our methodology using standard

Susceptible-Infectious-Susceptible (SIS) and Susceptible-

Exposed-Infectious-Recovered (SEIR) epidemic models, and

an Allee model, all with intrinsic noise. All processes and

methods are demonstrated using a low-dimensional single

population model, as well as higher-dimensional two and

three population models. Then, the method is refined to dem-

onstrate its use for the case where the optimal path begins

and ends on the deterministic path. Section II contains the

mathematical theory, including the master equation formula-

tion (Sec. II A), the finite-time Lyapunov exponent computa-

tions (Sec. II B), and the iterative action minimizing method

computations (Sec. II C). The one-population (1D) and two-

population (2D) SIS infectious disease models are described

in Section III, along with the development of the

Hamiltonians for both of these models. Section IV details the

FTLE and IAMM computations used to obtain the optimal

path results for the 1D model, with results verified by the an-

alytical solution. In Section V, we describe the process to ob-

tain the four-dimensional optimal path for the 2D SIS model.

In both Secs. IV and V, we discuss the requirements of the

methodologies for obtaining successful results. In Section

VI, we describe the Allee model and, using a simplified sys-

tem, present a scenario for the use of our methods to describe

the optimal path of higher-dimensional systems when the op-

timal path begins and ends at critical points along the deter-

ministic path. Section VII demonstrates the power of our

method for a higher-dimensional 3D SEIR model. Section

VIII contains the discussion and conclusions.

II. GENERAL THEORY

A. Master equation formalism

The method we present in this article is general and may

be used to compute optimal escape paths, switching paths, or

extinction paths for a wide variety of stochastic dynamical

systems. However, to make the method transparent, this arti-

cle focuses on computing the optimal path to extinction for
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two types of epidemic models and a population model. The

simplest deterministic epidemic compartmental models con-

tain two steady states of differing stability: an extinct state

where no infectious individuals are present and an endemic

state where the infection is maintained. The stability of these

steady states is determined by the value of the basic repro-

ductive number R0, as shown in Fig. 1. The reproductive

number can be thought of as the average number of new in-

fectious individuals that one infectious individual generates

over the course of the infectious period, in an entirely sus-

ceptible population. When R0< 1, the extinct state is stable

while the endemic state is unstable; when R0> 1, the extinct

state is unstable while the endemic state is stable. It is worth

noting that since the model is deterministic, a population at

the attracting endemic state can never go extinct.

To capture extinction events, we must consider a sto-

chastic model with internal noise that represents the random

interactions of individuals in the population. Therefore, a

master equation is used to describe the effect of stochastic-

ity. Let X be a state variable that represents the number of

individuals in a single population. The following theory

will be developed for a single population, but it is easily ex-

tended to multiple populations X1, X2,…Xn by the use of a

state vector X.

The probability density q(X, t) describes the probability

of finding X individuals at time t. Each possible population-

changing event (birth, death, infection, migration, etc.) is de-

fined by a transition rate Wr(X), where r is a positive or nega-

tive integer that defines an incremental change from state X
to state Xþ r. Then, the master equation that provides the

time evolution of q(X, t) for a single population is11,12

@q X; tð Þ
@t

¼
X

r

Wr X � rð Þq X � r; tð Þ �Wr Xð Þq X; tð Þ
� �

: (1)

In general, it is not possible to analytically solve the

master equation given by Eq. (1). Let X be scaled by N, the

typical population size in the metastable state. Using x¼X/

N, the transition rate Wr(X)¼Wr(Nx) can be represented as

the following expansion in N:

WrðNxÞ ¼ NwrðxÞ þ urðxÞ þ Oð1=NÞ; (2)

where x and the scaled transition rates wr and ur are Oð1Þ.
For N � 1, we approximate the scaled master equation

using the Wentzel–Kramers–Brillouin (WKB) approxima-

tion. To account for the rare possibility of extinction, we

look for the probability distribution in the form of the WKB

ansatz

q ¼ e�NSðx;tÞ; (3)

where Sðx; tÞ is a quantity known as the action.15–17,29 The

WKB ansatz given by Eq. (3) is substituted into the scaled

master equation, which is stated in terms of wrðx� r=NÞ and

Sðx� r=N; tÞ, where r/N is small. A Taylor series expansion

of these functions of x � r/N is performed, and one arrives at

a Hamilton–Jacobi equation H ¼ �@S=@t. At leading order,

the Hamilton–Jacobi equation has the form Hðx; pÞ ¼ 0,

whereH, known as the effective Hamiltonian, is given as

H x; pð Þ ¼
X

r

wr xð Þ epr � 1ð Þ; p ¼ dS
dx
; (4)

and p is the conjugate momentum. The solutions to

Hðx; pÞ ¼ 0 are the zero-energy curves of the system. At

least one solution is the optimal path where the action S is

minimized; this solution corresponds to the path that maxi-

mizes the probability of extinction.

Hamilton’s equations

_x ¼ @Hðx; pÞ=@p; _p ¼ �@Hðx; pÞ=@x (5)

describe the system’s dynamics and are easily found from

the Hamiltonian given by Eq. (4). The x dynamics along the

p¼ 0 deterministic line are described by

_x ¼
@H x; pð Þ
@p

����
p¼0

; (6)

which is the rescaled mean-field rate equation associated

with the original deterministic problem. For the simple mod-

els described by Fig. 1, the deterministic steady states are

nodes. It is easy to show that the WKB method has trans-

formed these steady state nodes in the original 1D determin-

istic system into steady state saddle points in the 2D set of

Hamilton’s equations. This allows for escape from the en-

demic state and provides a path to extinction that did not ex-

ist in the original deterministic model. In the epidemic

models we will discuss, the optimal path leaves the endemic

state and arrives at a new extinct point where at least one

momentum p value is nonzero.

The complexity of exploring multi-population stochastic

models becomes apparent when considering the solution to

the generalized set of Hamilton’s equations

_xj ¼
@H x1;…xn; p1;…pnð Þ

@pj
;

_pj ¼ �
@H x1;…xn; p1;…pnð Þ

@xj
; j ¼ 1;…n;

(7)

where n is the number of distinct population groups included

in a model. After employing the WKB formalism, the do-

main of the system is R2n, and a system of 2n equations

must be solved to find steady states. Furthermore, since the

Hamiltonian is now a function of 2n variables, the likelihood

that analytic solutions to the zero-energy Hamiltonian

FIG. 1. The simplest deterministic compartmental models have two steady

states. There is a bifurcation at R0¼ 1 that causes a change in stability. For

R0< 1, the extinct state is attracting while the endemic state is repelling. For

R0> 1, the extinct state is repelling while the endemic state is attracting.
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equation can be found is greatly reduced. Therefore, we

must consider alternate methodologies to compute the opti-

mal path.

B. Finite-time Lyapunov exponents (FTLE)

The computation of finite-time Lyapunov exponents is

often used to find coherent structures in fluid flows.30–33 The

FTLE provides a measure of how sensitively the system’s fu-

ture behavior depends on its current state. We have previous-

ly shown that the system displays maximal sensitivity near

the optimal path trajectory,24,25 which enables us to dynami-

cally evolve toward the optimal path.

We consider a velocity field v : R2n � I ! R2n given

by Eq. (5) that is defined over a time interval I¼ [ti, tf], and

the system of equations

_yðt; ti; y0Þ ¼ vðyðt; ti; y0Þ; tÞ; (8a)

yðti; ti; y0Þ ¼ y0; (8b)

where y; y0 2 R2n, and t 2 I. This dynamical system has

quantities known as Lyapunov exponents that measure the

growth rates of the linearized dynamics about the trajectory

of the system. To find the finite-time Lyapunov exponents

(FTLE), the Lyapunov exponents are computed on a restrict-

ed finite time interval.

To compute FTLE values, we choose a domain of inter-

est and define it as an evenly spaced grid of 2n dimensional

points y¼ (x, p), with initial position y0 defined at the grid

points. Then, using Hamilton’s equations (Eq. (5)), all points

are numerically integrated. The flow map / determines the

advection of the initial points as follows:30–33

/tiþT
ti

: y0 ! /tiþT
ti
ðy0Þ ¼ yðti þ T; ti; y0Þ: (9)

Then, the FTLE can be defined as

r y; ti þ T; Tð Þ ¼
1

jTj ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax Dð Þ

q
; (10)

where kmax (D) is the maximum eigenvalue of the right

Cauchy–Green deformation tensor D, which is given as

D y; ti þ T; Tð Þ ¼
d/tiþT

ti
y tð Þ
� �

dy tð Þ

 !�
d/tiþT

ti
y tð Þ
� �

dy tð Þ

 !
; (11)

with * denoting the adjoint.

For a given y 2 R2n at initial time ti, Eq. (10) gives

the maximum finite-time Lyapunov exponent for some fi-

nite integration time T (forward or backward) and pro-

vides a measure of the sensitivity of a trajectory to small

perturbations. The FTLE field given by r(y, ti, T) can be

shown to exhibit ridges of local maxima in phase space.

The ridges of the field indicate the location of attracting

(backward time FTLE field) and repelling (forward time

FTLE field) structures. In two-dimensional (2D) space,

the ridge is a curve which locally maximizes the FTLE

field, so that transverse to the ridge, one finds the FTLE

to be a local maximum. What is remarkable is that the

FTLE ridges correspond to the optimal path trajecto-

ries.24,25 The basic idea is that since the optimal path is

inherently unstable and observed only through many real-

izations of stochastic experiments, the FTLE shows that

locally the path is also the most sensitive to initial data.

Figure 2 shows a schematic that demonstrates why the

optimal path corresponds to a maximal FTLE ridge. If

one chooses an initial point on either side of the optimal

path near the endemic state, the two trajectories will sepa-

rate exponentially in time, since both extinct and endemic

states are unstable saddle points.

For single population models, the optimal path is a curve

in R2 with (x, p) coordinates. A contour map of r values as

a function of x and p is ideal for showing the maximal FTLE

ridge that corresponds to the optimal path. However, for

models involving multiple populations, the optimal path is a

curve in a high-dimensional space which is not easily visual-

ized. A methodology that can extract information about the

optimal path from the FTLE field without relying on visual

inspection is necessary.

Therefore, we use statistical tools to define a threshold

cut-off value, so that points associated with the highest

FTLE values can be identified. Additionally, points associat-

ed with deterministic structures, such as those occurring

where p¼ 0, can be excluded from selection. In this way,

points known to be in the vicinity of the optimal path are

identified and selected for inclusion in an array of high

FIG. 2. (a) The numerical integration of two initially close points on one

side of the manifold. After a finite time, the two points remain close to one

another, and therefore, the corresponding FTLE value will be small. (b) The

numerical integration of two initially close points on opposite sides of the

manifold. After a finite time, the two points move a significant distance apart

from one another, and therefore, the corresponding FTLE value will be

large.
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FTLE points. For low-dimensional models, this array may

produce a nearly complete optimal path. For high-

dimensional models, however, such a nice result is less like-

ly. Their known proximity to the optimal path, however,

makes the point array highly desirable as initial data for the

following method.

C. Iterative action minimizing method (IAMM)

As described in Section II A, the WKB formalism results

in a Hamiltonian with a zero-energy curve that is the optimal

path connecting two steady state saddle points. The Iterative

Action Minimizing Method26 (IAMM) is a numerical

scheme based on Newton’s method that computes optimal

transition pathways in systems of stochastic differential

equations. In particular, given an initial guess of high FTLE-

valued points produced by the method described in Sec. II B,

the IAMM is a useful method for determining the optimal

path.

We consider the general situation where a path connect-

ing steady states Ca and Cb starts at Ca at t¼�1 and ends

at Cb at t¼þ1. Then, a time parameter t exists such that

�1< t<1. For this method, we require a numerical

approximation of the time needed to leave the region of Ca

and arrive in the region of Cb. Therefore, we define a time

T� such that �1<�T� < t<T� <1. Additionally,

C(�T�)�Ca and C(T�)�Cb. In other words, the solution

stays very near the equilibrium Ca for �1< t��T�, has a

transition region from �T� < t<T�, and then stays near Cb

for T� < t<þ1.

The interval [�T�, T�] is discretized into N segments us-

ing a uniform step size h¼ (2T�)/N. Alternatively, one may

map the [�T�, T�] interval onto the [0, 1] interval via the lin-

ear transformation t¼ 2T�s � T� and use a step size of

h¼ 1/N to discretize the interval. It is worth noting that for

some problems, such as the Allee system described in Sec.

VI C, it may be necessary to use a non-uniform step size to

resolve sharp transition regions.26

Given a non-uniform time step hk, then one has the time

series tkþ1¼ tkþ hk. The derivative of the corresponding

function value qk is approximated using central finite differ-

ences by the operator dh given as

d

dt
qk � dhqk �

h2
k�1qkþ1 þ h2

k � h2
k�1

� �
qk � h2

kqk�1

hk�1h2
k þ hkh2

k�1

;

k ¼ 0;…;N:

(12)

Clearly, if a uniform step size is chosen, then Eq. (12)

simplifies to the familiar form given as

d

dt
qk � dhqk �

qkþ1 � qk�1

2h
; k ¼ 0;…;N: (13)

Thus, one can develop the system of nonlinear algebraic

equations

dhxk �
@H xk; pkð Þ

@p
¼ 0; dhpk þ

@H xk; pkð Þ
@x

¼ 0;

k ¼ 0;…;N;

(14)

which is solved using a general Newton’s method. Note that

Eq. (14) computes the difference between the central finite

difference approximation of each partial derivative (see Eq.

(7)) with the appropriate Hamilton’s equation.

We let qjðx; pÞ ¼ fx1;j…xN;j; p1;j…pN;jg
T

be an extend-

ed vector of 2nN components that contains the jth Newton it-

erate, where n is the number of populations. When j¼ 0,

q0(x, p) provides the initial “guess” as to the location of the

path that connects Ca and Cb. In our work, q0 comes from

the results of FTLE computations. Given the jth Newton iter-

ate qj, the new qjþ1 iterate is found by solving the linear

system

qjþ1 ¼ qj �
F qjð Þ
J qjð Þ

; (15)

where F is the function defined by Eq. (14) acting on qj, and

J is the Jacobian. Equation (15) is solved using LU decom-

position with partial pivoting.

The IAMM, like any scheme involving Newton’s meth-

od, is sensitive to the initial condition. A poor initial guess

may lead to erroneous results including convergence to a

curve that is not the optimal path or even no convergence. It

is worth reiterating that path dynamics that include a fast,

sharp transition may require the use of a non-uniform step

size h, so that the transitional region has a finer mesh than

areas away from the fast transition. Additionally, the choice

of T� can affect the results. We discuss its importance in

Secs. IV and V.

III. 1D AND 2D SIS MODELS

A. Introduction

The Susceptible-Infected-Susceptible (SIS) model

describes a disease without immunity from re-infection. The

population is composed of two compartments: Susceptibles

S and Infectives I. An individual is born susceptible. Then,

through contact, an individual may become ill and be classi-

fied as infectious. After a specified period, the individual has

recovered and is returned to the susceptible compartment.

Removal by death is possible from both compartments, but

we assume no disease-related deaths in this model.

In the SIS compartmental model shown in Fig. 3, we as-

sume a constant total population so that N¼ Sþ I. Rates are

defined as follows: l is a birth/death rate, b is the mass ac-

tion contact rate, and c is the recovery rate. The events af-

fecting each compartment are used to formulate two mean-

field equations that describe the system’s behavior over time

dS=dt ¼ lN � ðbSIÞ=N þ cI � lS; (16a)

dI=dt ¼ ðbSIÞ=N � cI � lI: (16b)

The mean-field system has two steady states given as

• S¼N, I¼ 0, the extinct state where no infection exists.
• S ¼ NðlþcÞ

b ; I ¼ Nð1� lþc
b Þ, the endemic state of persistent

infection.

As previously mentioned, the stability of the

steady states depends upon the value of R0. For this model,
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R0¼b/(lþ c), so the endemic steady state can be rewritten

in terms of R0 as S¼N/R0, I¼N(1 � (1/R0)). When R0> 1,

the endemic state is attracting and the extinct state is

repelling.

B. 1D and 2D SIS stochastic models

Clearly, when R0> 1, a population at the endemic state

can never go extinct in the deterministic SIS model formulat-

ed in Sec. III A. To understand how extinction can occur, we

must include stochastic effects due to the random interaction

of individuals in the population. We do this using the master

equation and WKB formalism as described in Sec. II A.

Using the state variable X¼ (S, I) to represent the two com-

partmental model, a list of transitions for all possible events

is formulated, as shown in Table I. One can write down the

master equation for this example using the transitions from

Table I along with the general form of the master equation

given by Eq. (1).

Scaling by the constant population size N produces new

variables s¼ S/N and i¼ I/N, so that sþ i¼ 1. Then, the

Hamiltonian arising from the WKB method for the 2D SIS

model is

Hðs; i; ps; piÞ ¼ lðeps � 1Þ þ bsiðe�psþpi � 1Þ
þ ciðeps�pi � 1Þ þ lsðe�ps � 1Þ
þ liðe�pi � 1Þ: (17)

If one assumes that births and deaths are negligible, then

the total number N of individuals in the two population mod-

el is constant. As a result, the model effectively becomes a

single infectious population with transitions and rates shown

in Table II. This is known as the constrained SIS model, and

a more detailed analysis can be found in Ref. 34.

As with the 2D SIS example, a master equation for the

1D SIS example can be formulated using Eq. (1) and the

transitions in Table II. After scaling by N, and restating s as

1 � i, the resulting Hamiltonian for the 1D SIS model is

Hði; pÞ ¼ bð1� iÞiðep � 1Þ þ jiðe�p � 1Þ; (18)

where we have omitted the pi subscript, since there is only

one momentum variable for a single population model.

IV. 1D SIS RESULTS

We begin by finding the analytical zero energy solutions

for the 1D SIS Hamiltonian given by Eq. (18). The solution

i¼ 0 represents extinction; a second solution is p¼ 0, which

corresponds to the deterministic dynamics. The third solution

is the optimal path and is given by

p ¼ ln
j

b 1� ið Þ

� 	
: (19)

Next, we find the analytical critical points of Hamilton’s

equations

_i ¼ bð1� iÞiep � jie�p; (20a)

_p ¼ bð2i� 1Þðep � 1Þ � jðe�p � 1Þ: (20b)

The trivial solution (i, p)¼ (0, 0) is associated with the

deterministic extinct state (S, I)¼ (N, 0). A second critical

point (i, p)¼ (1 � j/b, 0) is associated with the endemic

state. Note that the deterministic mean-field endemic (S, I)
point was an attracting node for R0> 1, but the endemic

(i, p) state found using Hamilton’s equations is a saddle

point, allowing for a path to escape from the endemic level.

A third critical point ð0; lnðj=bÞÞ, called the fluctuational ex-

tinction point, represents a new disease-free state with non-

zero momentum, distinguishing it from the deterministic ex-

tinct point (0, 0). As shown in Fig. 4, all critical points for

the SIS model are metastable saddle points.

We will now describe the use of the FTLE and IAMM

numerical schemes to compute the optimal path. Our numer-

ical results will be compared with the analytical solution giv-

en by Eq. (19). Although we know the analytic solution of

the optimal path for the 1D SIS model, our objective is to

present a useful methodology when no solution is known. In

Sec. V, we will consider the 2D SIS model, where an analyt-

ic solution of the optimal path is not available.

A. Finite-time Lyapunov exponents (FTLE)

We compute the FTLE field using Hamilton’s equations.

There are two important components for producing an accu-

rate FTLE field for any model: (1) a domain that is both

FIG. 3. The SIS model compartmental flow includes birth lN, infection

bSI/N, recovery cI, death of susceptible individuals lS, and death of infected

individuals lI.

TABLE I. 2D SIS transitions and rates.

Event S Transitions I Transitions Scaled rate

Birth Wþ1¼lN l
Infection W�1 ¼ bSI=N Wþ1 ¼ bSI=N bsi

Recovery Wþ1 ¼ cI W�1 ¼ cI ci

Death W�1 ¼ lS W�1 ¼ lI ls, li

TABLE II. 1D SIS transitions.

Event I Transitions Scaled rate

Infection W�1 ¼ bSI=N bð1� iÞi
Recovery Wþ1¼jI ji
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sufficiently large and sufficiently meshed must be chosen,

and (2) a finite time T must be chosen large enough to

capture the dynamics of the system. The critical points of

Hamilton’s equations are our primary source for boundary

information. For the 1D SIS model, we use the critical

points of Eqs. (20a) and (20b) to define domain bound-

aries of at least 0� i� (1 � j/b) and lnðj=bÞ � p � 0.

We recommend that the FTLE domain extend a small

distance beyond these boundaries to fully capture the sys-

tem dynamics.

The numerical integration step size is given as dt. One

must consider that a point within the domain may be inte-

grated beyond the domain boundaries. We use hard domain

boundaries for our FTLE computations. A point integrated

outside of the domain is no longer integrated, and the FTLE

value last assigned to it remains unchanged. Although some

points are advected outside the domain on the initial

integration step, using a relatively small dt value minimizes

this, with the end result being a more accurate FTLE field.

B. High value FTLE point harvesting

We wish to harvest points along the high value FTLE

ridge that forms a pathway from the endemic point to the

fluctuational extinction point as shown in Fig. 6. These

points will serve as an initial guess of the optimal path for

IAMM computations. To harvest these points, we define a

threshold that is three standard deviations above the mean of

the 1D SIS FTLE data. Additional restrictions limit consider-

ation to only those points occurring between the endemic

and fluctuational extinction points. Specifically, for parame-

ters b¼ 5.0 and j¼ 1.0, we limit the range of i and p
to .001< i< 0.8 and �1.6< p<�0.001. This also elimi-

nates points in close proximity to the deterministic p¼ 0 line

and the extinction i¼ 0 line from selection. The selection

process yields an array of about 10 000 points that, when

plotted, closely approximate the optimal path defined by Eq.

(19).

Since the IAMM computation involves the inversion of

a matrix with dimensions dependent on the number of array

points, it is desirable to reduce the number of points. We

evaluate the coordinates of each point in the Hamiltonian

given by Eq. (18) and those yielding a value within a toler-

ance of 5.0� 10�5 to H ¼ 0 are chosen. This produces the

994 point array shown in Fig. 5(a).

C. IAMM computations

For the 1D SIS model, it seems unnecessary to iterate

the 994 point q0 initial condition using IAMM; the points ap-

pear to lie directly on the optimal path (Fig. 5(a)). However,

performing the IAMM computation reveals information that

is useful when finding the optimal path for higher dimension-

al models.

FIG. 4. General version of all solution curves for the 1D SIS model when

R0> 1. The horizontal axis represents the infectious population i, while the

vertical axis represents conjugate momentum p. The dashed, horizontal line

denotes the deterministic dynamics when p¼ 0. The dotted, vertical line

denotes the trivial solution when i¼ 0. The third curve, described by Eq.

(19), connects the endemic point to the fluctuational extinction point, where

the population is zero but the momentum is non-zero.

FIG. 5. The success of IAMM processing is dependent upon the ordering of the initial condition, as illustrated by these 1D SIS figures. Panel (a) contains the

initial condition q0 with color-coded segments; each segment holds an equal number of points. The dashed black line underlying the points is the analytic opti-

mal path given by Eq. (19). Note that the FTLE-generated initial condition is very accurate and thus obscures the position of the optimal path. Panels (b) and

(c) contain the results after two Newton iterations of the IAMM. Since we have colored the initial condition, one can observe how the ordering of q0 affects

the IAMM outcome. In (b), q0 was ordered from the fluctuational extinct state to the endemic state, whereas in (c), q0 was ordered from endemic state to fluctu-

ational extinction. Panel (b) shows the shifting of array points as the IAMM attempts to reposition points far from their original position in order to achieve the

desired point ordering from the endemic to the extinct state. The points move so far from the optimal path that, ultimately, the method does not converge to the

optimal path. In contrast, (c) reflects minimal repositioning due to IAMM adjustments. All IAMM computations were done using T�¼ 2.
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In particular, the order of the initial condition is of pri-

mary importance. The SIS optimal path flows from the en-

demic state to the fluctuational extinct state. Figure 5

illustrates the differing outcomes when q0 is ordered from

the fluctuational extinct state to the endemic state (Fig. 5(b))

compared to when q0 mimics the correct flow (Fig. 5(c)).

The extreme adjustments revealed in Fig. 5(b) reflect an at-

tempt to reorder the points. Repositioning of points away

from the path is fundamentally disruptive, making diver-

gence more likely.

D. 1D SIS optimal path

Figure 6 demonstrates complete agreement of the FTLE

results and the IAMM results with the analytical optimal

path given by Eq. (19). Specifically, Fig. 6 shows an average

of the forward and backward FTLE fields for the 1D SIS

model. The three analytical zero-energy solution curves of

the Hamiltonian agree well with the red, maximal FTLE

ridges. Both the analytical optimal path and the final IAMM

optimal path appear as overlays on the maximal FTLE ridge.

V. 2D SIS RESULTS

We begin by determining whether the Hamiltonian for

the 2D SIS model, given by Eq. (17), has any zero-energy

analytic solutions. One solution is the deterministic surface

where both ps and pi are zero, and another is the non-

infectious surface where i and ps are both zero. Since neither

of these solutions represents the optimal path, we must find

it numerically.

We start by finding the analytical critical points of

Hamilton’s equations which are given by

_s ¼ leps � bsie�psþpi þ cieps�pi � lse�ps ; (21a)

_i ¼ bsie�psþpi � cieps�pi � lie�pi ; (21b)

_ps ¼ �½biðe�psþpi � 1Þ þ lðe�ps � 1Þ	; (21c)

_pi ¼ �½bsðe�psþpi � 1Þ þ cðeps�pi � 1Þ þ lðe�pi � 1Þ	:
(21d)

The point (s, i, ps, pi)¼ (1, 0, 0, 0) represents the deter-

ministic extinct state. The endemic state is located at

ððcþ lÞ=b; 1� ððlþ cÞ=bÞ; 0; 0Þ, while the fluctuational

extinct state is located at ð1; 0; 0; ln½ðlþ cÞ=b	Þ. A stability

analysis of these points shows that all three are saddle points.

Two additional real critical points are also found. Their pos-

sible influence will be discussed later.

A. Finite-time Lyapunov exponents (FTLE)

The critical points of Eqs. (21a)–(21d) define domain

boundaries of at least ðcþ lÞ=b � s � 1; 0 � i �
ð1� ½ðlþ cÞ=bÞ and ln½ðlþ cÞ=b � pi � 0. However, ps is

zero at both the endemic and fluctuational extinction steady

states, revealing no information about its range. FTLE com-

putations could be used in a “guess-and-check” manner to

deduce the range of ps, but this is a time-consuming choice.

A quicker alternative is derived from our knowledge that the

optimal path contains points that evaluate H to be zero. A

four-dimensional grid based on the three known domains is

defined using a broad guess for the range of ps. Each grid

point is evaluated in the Hamiltonian, and the points that

meet a chosen tolerance are retained. A visual inspection

provides the ps range most likely to include points occurring

along the optimal path.

For all 2D SIS computations, we use parameter values

l¼ 0.2, b¼ 104, and c¼ 100. Using a tolerance of

H < 10�9, a minimum ps value of �0.04 is determined by

visual inspection. Table III contains the dimensions of the

domain grid used for the 2D SIS FTLE calculations.

Methods to view the resulting four-dimensional array are

discussed at the end of this section.

B. High value FTLE point harvesting

Just as for the 1D SIS model, points along the high

FTLE ridge must be selected to serve as an initial guess for

the IAMM computation. First, an FTLE value threshold

must be determined. Since the FTLE data contain over 108

values, the use of three standard deviations above the mean

to define a threshold yields far too many points. Instead, we

use an FTLE threshold value of 4.25, which reduces the total

number of points to about 13 000. For this harvesting, we

also eliminate all points on the deterministic surface, as well

as points beyond the boundaries of the optimal path as de-

scribed in Table III. Additionally, we eliminate high FTLE

points within 0.001 of i¼ 0, since this interval contains a

large number of points that provide no significant

information.

Keeping in mind the matrix inversion done as part of

IAMM processing, the number of points in q0 was further

TABLE III. 2D SIS domain definition.

Lower limit Upper limit Grid dimension

s 0.954 1.0012 119

i �0.002 0.038 101

ps �0.04 0.002 106

pi �0.04 0.0016 105

FIG. 6. Average of forward and backward FTLE fields for the 1D SIS mod-

el. The analytic solution for the optimal path appears as a black curve. The

section between the endemic and fluctuational extinct states is overlaid in

blue with the optimal path produced by IAMM computations. The FTLE

computations were done using a fourth-order Runge–Kutta scheme with

dt¼ 0.02, a finite time T¼ 7, and a grid resolution of 0.0005 for both i and

p. Parameter values are b¼ 5.0 and j¼ 1.0.
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reduced by evaluating each point in the Hamiltonian given

by Eq. (17). Those within a tolerance of 2.5� 10�6 to H ¼ 0

were retained, and these 1752 points are shown in Figs. 7(a)

and 7(b).

C. IAMM computations

As mentioned in Sec. IV C, successful IAMM results are

more likely when q0 reflects the flow of the optimal path.

For the 2D SIS model, the endemic and fluctuational extinct

steady states suggest that s monotonically increases, and i
and pi monotonically decrease as the optimal path traverses

the domain. Since ps¼ 0 at both steady states, its value must

decrease, and then increase, perhaps repeatedly. Therefore,

the harvested points cannot be sorted into a single monotonic

ordering that will fulfill all these conditions simultaneously.

Instead, a hybrid q0 is created for IAMM processing.

For the (s, i) coordinates, the points shown in Fig. 7(a) are

ordered with s increasing and i decreasing. For the (ps, pi)

coordinates, the plot of the harvested points shown in Fig.

7(b) is examined, and an ordered array that approximates

areas of dense points as a piecewise linear curve is created,

as shown in Fig. 7(c). The section from pi¼ 0 to pi¼�0.3

contains two-thirds of the points, and the remaining one-

third populate the lower section. The points of Figs. 7(a) and

7(c) are combined to produce q0.

After twelve iterations using this initial condition, 90%

of the array points meet a tolerance of 1.5 � 10�6 of H ¼ 0.

After 50 iterations of the IAMM process, the optimal path

shown in Fig. 8 is obtained. All points in this array meet a

tolerance of 5 � 10�7.

This successful result was only achieved after resolving

another sensitivity of the IAMM scheme that involves the

spacing of points in the initial array. Since the harvested

points are not evenly spaced, it is likely that some areas are

over-represented while others are under-represented. Our

FIG. 7. Panel (a) contains the (s, i) coordinates and panel (b) contains the (ps, pi) coordinates of the 1752 points harvested from the FTLE results for use as the

initial condition in the IAMM computations for the 2D SIS model. For best results, q0 should be ordered from the endemic state to the fluctuational extinct

state. The harvested points cannot be ordered properly since ps is not monotonic. We substitute the ordered array plotted in panel (c) for the actual (ps, pi) coor-

dinates of panel (b), and pair it with a sorted (s, i) array plotted in panel (a) to obtain an ordered initial guess q0. The green circle denotes the endemic steady

state, while the red circle denotes the fluctuational extinct steady state.

FIG. 8. The 2D SIS results from the IAMM, obtained using T�¼ 13 for 50 iterations of the Newton method process. Panel (a) contains the final location of all

(s, i) coordinates from Fig. 7(a). Panel (b) contains the final location of all (ps, pi) coordinates from Fig. 7(c). Together, they represent the optimal path in four-

dimensional space. Although the points appear equally spaced, an examination of the array values shows that is not the case. The central section of the path, be-

tween two turns in both views, contains only about 200 of the 1752 point array. The other sections of the path, namely, the exit from the endemic state and the

approach to the fluctuational extinct state, are each populated by half of the remaining points. This is due to the fact that very slow dynamics are present near

either steady state, while the area of fast dynamics begins and ends with a transition that is, in fact, a change in the direction of the optimal path. The green cir-

cle denotes the endemic steady state, while the red circle denotes the fluctuational extinction steady state.

083101-9 Bauver, Forgoston, and Billings Chaos 26, 083101 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.68.20.188 On: Tue, 02 Aug

2016 20:46:34



initial trials began with a smaller array of about 900 har-

vested points, and we used the same technique of pairing the

actual s, i values with the approximated ps, pi values to create

the initial array. While the array did converge to the optimal

path, the results showed a double line of points in the middle

portion of the optimal path. The points in this area were not

accurate to a stringent tolerance, and additional iterations did

not improve the result.

This issue was resolved by lowering the harvest thresh-

old to increase the number of initial points. In this instance,

and in other problems we explored, the inclusion of more

points to create a more densely packed initial guess increased

the likelihood of converging to the optimal path.

D. 2D SIS optimal path

In order to validate the numerically computed IAMM

optimal path, we consider a method for visualizing the

results so that a comparison can be made with the FTLE sim-

ulations. The obvious choice is to develop a set of three-

dimensional projections of the four-dimensional path. In the

case of the IAMM result, one can simply omit one dimension

of the final array and project the remaining three coordinate

array. But in the case of the FTLE result, each four-

dimensional point is associated with a unique FTLE value.

Therefore, the omission of one dimension will produce mul-

tiple points with the same three-dimensional location but dif-

ferent FTLE values.

We therefore choose to average the FTLE values associ-

ated with the same three coordinate locations. For example,

in Fig. 9(a), the contour plot is displayed on a grid of (i, pi, s)

points. Each location has an associated FTLE value that is

the mean of the FTLE values assigned to the 106 points hav-

ing coordinates i, pi, and s in common. In other words, we

have averaged through the ps slices.

One flaw in averaging is that it may obscure the mini-

mum and maximum FTLE values. However, a high FTLE

ridge in four dimensions is more like a multi-dimensional

rope than a single thread. Hence, the high FTLE values per-

sist for many slices in one or more dimensions. Additionally,

use of a finely meshed grid and a domain in the vicinity of

the optimal path will control the loss of true FTLE

information.

Figure 9 shows two projections of the FTLE field over-

laid with the IAMM computed optimal path. The optimal

path is shown as a black curve that begins on the rear face

and flows to the front of both figures. Areas with high FTLE

values appear on the vertical slices in dark red. One can see

dominant curves on these red areas that mimic the curve of

the optimal path. One can also observe that high FTLE areas

in the vicinity of the optimal path persist, in varying degrees

of intensity, through multiple slices of the domain.

The projection in Fig. 9(b) reveals an interesting aspect

of the 2D SIS dynamics. The view, with ps on the z axis,

shows the optimal path fall and then rise. This change of di-

rection occurs near pi¼�0.015, and the vertical slice in that

location shows a widening of the high FTLE ridge. The ver-

tical slice at pi¼�0.027 shows a split in the high FTLE

ridge, with an upper part that curves with the optimal path

and a lower part that curves downward away from the opti-

mal path. As previously mentioned, there are two additional

real-valued critical points. In Fig. 9(b), we include one of

them as a blue circle positioned in the foreground at approxi-

mately i¼�0.008, ps¼�0.03, pi¼�0.02. Its presence has

led to the harvesting of many high FTLE points that

“overshoot” the turn in the optimal path, such as those shown

in Fig. 7(b) forming a diagonal line that extends well beyond

ps¼�0.015. These same footprints then show up in the Fig.

9(b) projection and other projections not included in this arti-

cle. Although the FTLE provides an initial guess with seem-

ingly multiple paths, one must remember that one of these

“paths” does not connect to an extinct point and is not a

zero-energy solution of the Hamiltonian. Moreover, the

IAMM uses the initial guess to converge to the correct opti-

mal path.

FIG. 9. Two projections of the IAMM and FTLE results for the 2D SIS model. The optimal path obtained from the IAMM computation is represented as a

black curve. It begins at the endemic steady state (green circle) on the rear surface and ends at the fluctuational extinct steady state (red circle) in the upper

right foreground. Both projections show FTLE values averaged over the missing dimension, so that (a) shows the mean FTLE values of all ps slices and (b)

shows the mean for all s slices. In projection (a), the vertical pi slices contain areas of high FTLE values in red that closely correlate to the curve of the optimal

path. Projection (b), however, exhibits a widening and splitting of high FTLE regions. On vertical slice pi¼�0.0272, one observes a path diverging from the

optimal path. In the vicinity is a critical point, shown as a blue circle in the foreground of (b). This critical point is not part of the optimal path structure. A sta-

bility analysis reveals that the point is neither stable nor a saddle point, but from this projection and many others, it does create dynamics that may compete

with those along the optimal path. All FTLE computations were done both forward and backward in time using a fourth-order Runge–Kutta scheme with

dt¼ 0.02 and a finite time T¼ 10.
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VI. ALLEE POPULATION MODEL

The Allee model we present is a single population mod-

el. We choose to include it because it possesses an optimal

path that is particularly difficult to find numerically. Just as

with the SIS examples, the Allee optimal path diverges from

the deterministic path at a steady state that has become a sad-

dle point through the Hamiltonian formulation. The optimal

path for the SIS model then ends at a new steady state with

non-zero momentum. The optimal path for the Allee model,

however, travels through a region of non-zero momentum

and then rejoins the deterministic path. From there, the opti-

mal path follows deterministic dynamics to extinction. This

results in a dynamical system with two paths that traverse

the region between the same two points in opposite direc-

tions.21 Most numerical methods that have been used over

the years to compute the optimal path fail in this instance.

We show, however, that our numerical method successfully

captures the optimal path.

A. Introduction

The Allee model was formulated as a result of the re-

search of Warder Allee, who observed species in order to de-

termine what contributed to their well-being.35 The crux of

his model is that population density has a direct effect on the

growth of a population. His research showed that there exists

an interval of population density in which a species exhibits

cooperative behavior, and such behavior results in the

growth of the population. He observed that a certain level of

crowding was beneficial, and helped with combating external

attacks such as increased predation or infection.

Additionally, he noted that the resources the species requires,

such as a healthy environment and food, must be available in

sufficient quantities to support the population and engender

cooperative behavior.

In contrast, Allee showed that lower population densities

often result in a species with decreasing numbers which he

attributed to a lack of cooperative behavior. He also noted

that extinction was more likely in species with small popula-

tions. When he considered the other extreme, an overly

dense population, he observed reduced lifespans and a lack

of cooperative behavior, often caused by a competition for a

stagnant amount of food, water, and other resources neces-

sary for life. Allee concluded that the benefits of cooperation

in a population break down when population density

becomes too high or too low.

The dynamical model that describes Allee’s conclusions

divides the population density into three intervals. The mid-

dle interval, where population growth occurs, is delineated

by a minimum value called the threshold and a maximum

value called the carrying capacity. These deterministic dy-

namics are shown in Fig. 10 as a phase line. The steady state

c1 represents the threshold, and the steady state c2 represents

the carrying capacity. The steady state c0 is the extinct state

where the population is zero.

According to these dynamics, both c0 and c2 are attract-

ing, while c1 is repelling. Consideration of this scenario leads

to the conclusion that population extinction is impossible

whenever the population exceeds c1. However, extinction of

species does occur in nature. To capture these rare extinction

events mathematically, one must consider a stochastic Allee

model, where the noise is due to the random interactions of

the individuals.

B. Stochastic Allee model

As mentioned earlier, we use the master equation and

WKB formalism to find the Hamiltonian associated with the

stochastic Allee problem. The stochastic Allee population

model is represented by the transition processes and associat-

ed rates found in Table IV. The first two transitions are re-

quired to capture the Allee effect. The death rate of a low-

density population is given by l, and the growth rate of the

population when the density is large enough is given by k.

The negative growth rate for an overcrowded population is

provided by r, and K is the carrying capacity of the popula-

tion. In this particular example, all of the transitions are

single-step transitions. Therefore, the increment r only takes

on the values of 61. The scaled transition rates in Eq. 2 are

also shown in the final column of Table IV.

Using the scaled transitions, we formulate the following

two equations with leading terms of the form Nw(r) as given

in Eq. (2):

W1 Kxð Þ ¼ K
k
2

x2

� 	
� k

2
x; and

W�1 Kxð Þ ¼ K lxþ r
6

x3

� 	
� r

2
x2 þ r

3K
:

(22)

Then, the effective Hamiltonian (Eq. (4)) for the Allee

model is

H x; pð Þ ¼
k
2

x2 ep � 1ð Þ þ lxþ r
6

x3

� 	
e�p � 1ð Þ: (23)

FIG. 10. Three steady states delineate the deterministic dynamics of the

Allee model. The attracting point c0 is the extinct steady state, the repelling

point c1 is the threshold value that separates a growing population from a

decaying one, and the attracting point c2 is the carrying capacity.

TABLE IV. Allee transitions and rates.

Event

Transition

expression Transition Scaled transition

Decay X !1 W�1ðXÞ ¼ lX Klx

Growth 2X! 3X W1ðXÞ ¼ ðk=2KÞXðX � 1Þ ðk=2ÞðKx2 � xÞ
Reduction 3X! 2X W�1ðXÞ ¼ ðr=6K2ÞXðX � 1ÞðX � 2Þ ðr=6ÞðKx3 � 3x2 þ 2

KÞ
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C. Allee results

Similar to the 1D SIS, the zero-energy solutions are the

extinction line x¼ 0, the deterministic line p¼ 0, and the op-

timal path given by

p ¼ ln
6lþ rx2

3kx

� 	
: (24)

A set of Hamilton’s equations for the stochastic Allee

model are

_x ¼ kx2

2
ep � lxþ rx3

6

� 	
e�p; (25a)

_p ¼ � kx ep � 1ð Þ þ lþ rx2

2

� 	
e�p � 1ð Þ


 �
; (25b)

which have three steady states located at

x0 ¼ 0; x1;2 ¼
3k6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9k2 � 24lr

p
2r

: (26)

The FTLE results, shown in Fig. 11, illustrate complete

agreement with the analytical solution given by Eq. (24).

High FTLE ridges appear along all the zero energy curves.

Clearly, c1 and c2 are connected by two paths. On the deter-

ministic line p¼ 0, the directional flow is from c1 to c2, while

along the optimal path (in blue), the directional flow is from

c2 to c1. For this particular example, existing numerical

methods will converge to the deterministic piece rather than

the optimal path of interest.

Just as with the 1D SIS, an extraction of the points asso-

ciated with maximal FTLE values yields almost perfect

agreement with the optimal path. Any attempt to improve

the already excellent result using IAMM seems pointless.

Instead, we present evidence of the efficacy of the IAMM

process using a scenario that is analogous to a higher dimen-

sional system. In such systems, maximal FTLE-valued points

in the vicinity of the optimal path often define a multi-

dimensional region about the path rather than the true path.

Therefore, using this two-dimensional system, we create

such a region by randomizing points about the optimal path

to replicate the location of high-FTLE points. These random

points serve as the initial condition for IAMM processing. In

order to mute the influence of deterministic dynamics, we do

not include points in the initial condition that are in the im-

mediate vicinity of the critical points, given by Eq. (26).

This results in a “gap” between the steady state locations and

the points chosen as the endpoints of the initial condition ar-

ray. It is worth noting that the part of the path closest to the

critical points (where the gap occurs) tends to be the easiest

piece of the optimal path to find. More importantly, our

method captures the central part of the path, where other

methods are known to fail.

To achieve convergence in this problem, we employed a

non-uniform step size as described in Sec. II C. In particular,

we used an exponential stretching transformation given by

s¼ 2/(1þ ect), where t lies in the interval [0, 1]. For the

results shown in Fig. 12, c was set to 5.

VII. 3D SEI MODEL

To demonstrate the power of our method, we consider a

higher-dimensional Susceptible-Exposed-Infected-Recovered

(SEIR) model. In the mean-field system shown below, one

can see that the R-equation is decoupled from the other 3

equations. This allows us to consider the 3D SEI system.

Through the stochastic formulation described previously, the

optimal path for this system will lie in 6-dimensional (6D)

space. As far as the authors know, there are no published

results with examples of computing optimal paths in dimen-

sions higher than four.

FIG. 11. Average of forward and backward FTLE fields for the Allee model.

The optimal path, given by Eq. (24) and denoted by the blue curve overlay,

leaves the deterministic line at the carrying capacity c2 and rejoins the deter-

ministic line at the threshold c1. The optimal path then essentially runs deter-

ministically to the extinct state c0. All FTLE computations were done using

a fourth-order Runge–Kutta scheme with dt¼ 0.1, a finite time T¼ 40, and a

grid resolution of 0.002 in x and 0.001 in p. Parameter values are k¼ 1.6,

l¼ 0.2, r¼ 3.0.

FIG. 12. IAMM results for the Allee model using 1000 points randomized

about the analytical optimal path as the initial condition. After three Newton

iterations, the point locations, shown as a black line, have markedly con-

verged to the analytic optimal path (in red). The initial array contained nine

points within 10�5 of Hðx; pÞ ¼ 0, but after IAMM processing 60% of the

points meet that tolerance. In order to lessen the effect of deterministic dy-

namics on IAMM convergence, artificial “endpoints,” shown as blue dots,

were defined at x¼ 0.3101 and x¼ 1.2115. Consequently, two small portions

of the optimal path between these points and the analytic steady states

(shown as black dots) are not found. A T� of 10.2 was used to produce these

results.
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A. Introduction

The SEIR model typically is used to describe childhood

diseases where the individual eventually recovers and

obtains immunity from the disease. The population is com-

posed of four compartments: Susceptibles S, Exposed E,

Infectious I, and Recovered R. An individual is born suscep-

tible. By contact with an infectious individual, a susceptible

individual becomes exposed. An exposed individual is

infected by the disease but is not yet infectious. After a

specified latent period, the exposed individual becomes in-

fectious and is now capable of transmitting the disease to a

susceptible individual. After a specified period, the individu-

al recovers and is immune to the disease. Removal by death

is possible from all compartments, but we assume no

disease-related deaths in this model.

In the SEIR compartmental model shown in Fig. 13, the

rates are defined as follows: l is a birth/death rate, b is the

mass action contact rate, a is the exposure rate, and j is the

recovery rate. The events affecting each compartment are

used to formulate the following mean-field equations that de-

scribe the system’s behavior over time:

dS=dt ¼ lN � ðbSIÞ=N � lS; (27a)

dE=dt ¼ ðbSIÞ=N � ðaþ lÞE; (27b)

dI=dt ¼ aE� ðjþ lÞI; (27c)

dR=dt ¼ jI � lR: (27d)

As with the SIS models described in Sec. III, the SEIR

model given by Eqs. (27a)–(27d) has analytical expressions

for the extinct state and the endemic state.

B. 3D SEI stochastic model

As with the previous models, a population at the endem-

ic state can never go extinct (for R0> 1) in the deterministic

SEIR model formulated in Sec. VII A. To understand how

extinction can occur, we must include stochastic effects due

to the random interaction of individuals in the population.

We do this by using the master equation and WKB formal-

ism as described in Sec. II A.

Assuming that the average population size is N, we can

constrain the population size so that N¼ SþEþ IþR.

Noting that R is overdetermined and decoupled from the rest

of the system, we can consider the dynamics of the con-

strained SEIR model in terms of the S, E, and I individuals.

Using the state variable X¼ (S, E, I), a list of transitions for

all possible events is formulated, as shown in Table V.

Scaling by the population size N produces new variables

s¼ S/N, e¼E/N, and i¼ I/N. Then, the Hamiltonian arising

from the WKB method for the 3D SEI model is

H ¼ lðexpðpsÞ � 1Þ þ bsiðexpð�ps þ peÞ � 1Þ
þ aeðexpð�pe þ piÞ � 1Þ þ jiðexpð�piÞ � 1Þ
þlsðexpð�psÞ � 1Þ þ leðexpð�peÞ � 1Þ
þ liðexpð�piÞ � 1Þ: (28)

C. 3D SEI results

The Hamiltonian given by Eq. (28) has no analytical so-

lution for the optimal path. Therefore, we must find it numer-

ically. As before, the process starts by finding the critical

points of Hamilton’s equations which are given by

_s ¼ l expðpsÞ � bse expð�ps þ peÞ � ls expð�psÞ; (29a)

_e ¼ bsi expð�ps þ peÞ � ae expð�pe þ piÞ � le expð�peÞ;
(29b)

_i ¼ ae expð�pe þ piÞ � ji expð�piÞ � li expð�piÞ; (29c)

_ps ¼ �½biðexpð�ps þ peÞ � 1Þ þ lðexpð�psÞ � 1Þ	; (29d)

_pe ¼ �½aðexpð�pe þ piÞ � 1Þ þ lðexpð�peÞ � 1Þ	; (29e)

_pi ¼ �½bsðexpð�ps þ peÞ � 1Þ þ jðexpð�piÞ � 1Þ
þ lðexpð�piÞ � 1Þ	: (29f)

The analytical endemic steady state is given as

ps¼ pe¼ pi¼ 0,

s ¼ aþ lð Þ jþ lð Þ
ab

;

e ¼ � l aþ lð Þ jþ lð Þ � ab

ab aþ lð Þ
;

i ¼ �l aþ lð Þ jþ lð Þ � ab

b aþ lð Þ jþ lð Þ
;

(30)

while the analytical fluctuational extinct state is given as

s¼ 1, e¼ i¼ ps¼ 0,

pe ¼ ln
blþ aþ lð Þ jþ lð Þ

b aþ lð Þ

 !
;

pi ¼ ln
aþ lð Þ jþ lð Þ

ab

� 	
:

(31)

FIG. 13. The SEIR model compartmental flow includes birth lN, infection

bSI/N, latency aE, recovery jI, death of susceptible individuals lS, death of

exposed individuals lE, death of infectious individuals lI, and death of re-

covered individuals lR.

TABLE V. 3D SEI transitions and rates.

Event S Transitions E Transitions I Transitions Scaled rate

Birth Wþ1 ¼ lN l
Exposed W�1 ¼ bSI=N Wþ1 ¼ bSI=N bsi

Infectious W�1 ¼ aE Wþ1¼ aE ae

Recovery W�1 ¼ jI ji

Death W�1 ¼ lS W�1 ¼ lE W�1 ¼ lI ls, le, li
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The FTLE field was computed using Hamilton’s equa-

tions (Eqs. (29a)–(29f)), and the high FTLE values were

extracted based on Euclidean distance from the endemic

state to use as an initial condition for the IAMM method.

Spiral optimal paths are difficult to obtain by the IAMM or

any method. In six dimensions, the FTLE identifies points in

a small region of the endemic state sufficiently close to the

optimal path for a good initial condition guess. Because this

problem has initial and final points on the same ps¼ 0 hyper-

plane, a small perturbation of 0.001 was added to the ps coor-

dinate to move it away from that invariant set (to avoid the

same sort of issue that can be found in the Allee problem and

that was discussed in Sec. VI C). The IAMM will converge

to a part of the optimal path for small T�. Once we obtain a

case of IAMM convergence, we can increase T� by continua-

tion to stretch it along the path and fill out the spiral. Results

are shown in Fig. 14.

VIII. DISCUSSION

In this article, we have developed a numerical methodol-

ogy that allows one to compute the optimal path of escape

from a metastable state or the optimal path of switching

from one metastable state to another metastable state in a

general stochastic dynamical system, whether the noise be

external or internal. There are many physical and biological

applications in which knowledge of the optimal path is of

great importance to fully understand the system’s dynamics.

Since the optimal path typically has no analytical form, we

must be able to numerically compute this path.

As described in the introduction, we transform the origi-

nal stochastic problem into a new deterministic system de-

scribed by a Hamiltonian that has dimensions twice that of

the original system. The optimal path is one of the zero-

energy solutions to this Hamiltonian. Hamilton’s equations

are found straightforwardly by differentiating the

Hamiltonian, and these equations are used to compute the

finite-time Lyapunov exponents. In previous work, we

showed that the optimal path corresponds to the maximal

ridge of FTLE, and used this to find the optimal path for sev-

eral low-dimensional systems. While the theory holds for

high-dimensional systems, the FTLE ridges are not so clear-

cut, and therefore, it is difficult to extract the optimal path

from FTLE in high-dimensional systems.

This article contains the detail required to use FTLE for

the much more complicated higher-dimensional models. This

work, taken by itself, illustrates a way to visualize the optimal

path in higher dimensional models where typical methods, in-

cluding shooting methods, are known to break down.

Additionally, the visualization of the system’s dynamics leads

to greater understanding of the model under consideration.

Furthermore, we have developed a combined numerical

scheme, wherein the FTLE results are used as an initial con-

dition for an iterative action minimizing method. As men-

tioned in Ref. 26, one of the primary limitations of the

IAMM is “…the finesse required in picking an initial guess

that guarantees convergence…”. Instead of making ad-hoc

initial guesses that will often fail to converge, our use of

FTLE to provide an initial guess is a constructive tool that

enables the IAMM to converge to the optimal path.

Our scheme has been demonstrated using multiple types

of stochastic epidemic models and a population model.

However, the procedure is general and may be used to find the

optimal escape or switching path for any stochastic dynamical

system where noise-induced escape from a metastable state or

noise-induced switching between metastable states occurs.
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