Skip to main content
Article
Carbon-Based Primary Productivity Modeling With Vertically Resolved Photoacclimation
Global Biogeochemical Cycles
  • T. Westberry
  • M. J. Behrenfeld
  • D. A. Siegel
  • Emmanuel Boss, University of Maine - Main
Document Type
Article
Publication Date
6-13-2008
Publication Number
GB2024
Abstract/ Summary

Net primary production (NPP) is commonly modeled as a function of chlorophyll concentration (Chl), even though it has been long recognized that variability in intracellular chlorophyll content from light acclimation and nutrient stress confounds the relationship between Chl and phytoplankton biomass. It was suggested previously that satellite estimates of backscattering can be related to phytoplankton carbon biomass (C) under conditions of a conserved particle size distribution or a relatively stable relationship between C and total particulate organic carbon. Together, C and Chl can be used to describe physiological state (through variations in Chl:C ratios) and NPP. Here, we fully develop the carbon-based productivity model (CbPM) to include information on the subsurface light field and nitracline depths to parameterize photoacclimation and nutrient stress throughout the water column. This depth-resolved approach produces profiles of biological properties (Chl, C, NPP) that are broadly consistent with observations. The CbPM is validated using regional in situ data sets of irradiance-derived products, phytoplankton chlorophyll: carbon ratios, and measured NPP rates. CbPM-based distributions of global NPP are significantly different in both space and time from previous Chl-based estimates because of the distinction between biomass and physiological influences on global Chl fields. The new model yields annual, areally integrated water column production of similar to 52 Pg C a(-1) for the global oceans.

Citation/Publisher Attribution
Westberry T, Behrenfeld MJ, Siegel DA, Boss E. Carbon-Based Primary Productivity Modeling With Vertically Resolved Photoacclimation. Global Biogeochemical Cycles. 2008;22(2): GB2024. To view the published open abstract, go to http://dx.doi.org and enter the DOI.
Publisher Statement
Copyright 2008 American Geophysical Union.
DOI
10.1029/2007GB003078
Version
publisher's version of the published document
Citation Information
T. Westberry, M. J. Behrenfeld, D. A. Siegel and Emmanuel Boss. "Carbon-Based Primary Productivity Modeling With Vertically Resolved Photoacclimation" Global Biogeochemical Cycles Vol. 22 Iss. 2 (2008)
Available at: http://works.bepress.com/emmanuel_boss/3/