Skip to main content
Article
A Bayesian Approach for Extracting Fluorescence Lifetimes from Sparse Data Sets and Its Significance for Imaging Experiments
Ames Laboratory Accepted Manuscripts
  • Kalyan Santra, Iowa State University and Ames Laboratory
  • Emily A. Smith, Iowa State University and Ames Laboratory
  • Xueyu Song, Iowa State University and Ames Laboratory
  • Jacob W. Petrich, Iowa State University and Ames Laboratory
Publication Date
5-1-2019
Department
Ames Laboratory; Chemistry
OSTI ID+
1492061
Report Number
IS-J 9839
DOI
10.1111/php.13057
Journal Title
Photochemistry and Photobiology
Abstract

The measurement of fluorescence lifetimes, especially in small sample volumes, presents the dual challenge of probing a small number of fluorophores and fitting the concomitant sparse data set to the appropriate excited‐state decay function. A common method of analysis, such as the maximum likelihood (ML) technique, assumes a uniform probability distribution of the parameters describing the fluorescence decay function. An improvement is thus suggested by implementing a suitable nonuniform distribution, as is provided by a Bayesian framework, where the distribution of parameters is obtained from both their prior knowledge and the evidence‐based likelihood of an event for a given set of parameters. We have also considered the Dirichlet prior distribution, whose mathematical form enables analytical solutions of the fitting parameters to be rapidly obtained. If Gaussian and exponential prior distributions are judiciously chosen, they reproduce the experimental target lifetime to within 20% with as few as 20 total photon counts for the data set, as does the Dirichlet prior distribution. But because of the analytical solutions afforded by the Dirichlet prior distribution, it is proposed to employ a Dirichlet prior to search parameter space rapidly to provide, if necessary, appropriate parameters for subsequent employment of a Gaussian or exponential prior distribution.

DOE Contract Number(s)
AC02-07CH11358
Language
en
Publisher
Iowa State University Digital Repository, Ames IA (United States)
Disciplines
Citation Information
Kalyan Santra, Emily A. Smith, Xueyu Song and Jacob W. Petrich. "A Bayesian Approach for Extracting Fluorescence Lifetimes from Sparse Data Sets and Its Significance for Imaging Experiments" Vol. 95 Iss. 3 (2019) p. 773 - 779
Available at: http://works.bepress.com/emily-smith/50/