Skip to main content
Article
Scanning Angle Raman Spectroscopy of Poly(3-hexylthiophene)-Based Films on Indium Tin Oxide, Gold, and Sapphire Surfaces
Applied Materials and Interfaces
  • Matthew W. Meyer, Iowa State University
  • Kelsey L. Larson, Iowa State University
  • Rakesh C. Mahadevapuram, Iowa State University
  • Michael D. Lesoine, Iowa State University
  • John A. Carr, Iowa State University
  • Emily A. Smith, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
8-16-2013
DOI
10.1021/am4023225
Abstract

Interest in realizing conjugated polymer-based films with controlled morphology for efficient electronic devices, including photovoltaics, requires a parallel effort to characterize these films. Scanning angle (SA) Raman spectroscopy is applied to measure poly(3-hexylthiophene) (P3HT):phenyl–C61–butyric acid methyl ester (PCBM)-blend morphology on sapphire, gold, and indium tin oxide interfaces, including functional organic photovoltaic devices. Nonresonant SA Raman spectra are collected in seconds with signal-to-noise ratios that exceed 80, which is possible due to the reproducible SA signal enhancement. Raman spectra are collected as the incident angle of the 785 nm excitation laser is precisely varied upon a prism/sample interface from approximately 35 to 70°. The width of the ∼1447 cm–1 thiophene C═C stretch is sensitive to P3HT order, and polymer order varied depending on the underlying substrate. This demonstrates the importance of performing the spectroscopic measurements on substrates and configurations used in the functioning devices, which is not a common practice. The experimental measurements are modeled with calculations of the interfacial mean square electric field to determine the distance dependence of the SA Raman signal. SA Raman spectroscopy is a versatile method applicable whenever the chemical composition, structure, and thickness of interfacial polymer layers need to be simultaneously measured.

Comments

Reprinted (adapted) with permission from Applied Materials and Interfaces, 5(17); 8686-8693. Doi: 10.1021/am4023225. Copyright 2013 American Chemical Society.

Copyright Owner
American Chemical Society
Language
en
File Format
application/pdf
Citation Information
Matthew W. Meyer, Kelsey L. Larson, Rakesh C. Mahadevapuram, Michael D. Lesoine, et al.. "Scanning Angle Raman Spectroscopy of Poly(3-hexylthiophene)-Based Films on Indium Tin Oxide, Gold, and Sapphire Surfaces" Applied Materials and Interfaces Vol. 5 Iss. 17 (2013) p. 8686 - 8693
Available at: http://works.bepress.com/emily-smith/21/